
Find the principal value of \[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\].
A.\[\dfrac{{3\pi }}{{10}}\]
B. \[\dfrac{{17\pi }}{{10}}\]
C. \[\dfrac{{7\pi }}{{10}}\]
D. None of these
Answer
214.5k+ views
Hints Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate. Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression. Then use the sum formula of cosine and calculate to obtain the required result.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

