
Find the principal value of \[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\].
A.\[\dfrac{{3\pi }}{{10}}\]
B. \[\dfrac{{17\pi }}{{10}}\]
C. \[\dfrac{{7\pi }}{{10}}\]
D. None of these
Answer
232.8k+ views
Hints Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate. Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression. Then use the sum formula of cosine and calculate to obtain the required result.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

