
Find the principal value of \[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\].
A.\[\dfrac{{3\pi }}{{10}}\]
B. \[\dfrac{{17\pi }}{{10}}\]
C. \[\dfrac{{7\pi }}{{10}}\]
D. None of these
Answer
217.8k+ views
Hints Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate. Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression. Then use the sum formula of cosine and calculate to obtain the required result.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

