
Find the principal value of \[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\].
A.\[\dfrac{{3\pi }}{{10}}\]
B. \[\dfrac{{17\pi }}{{10}}\]
C. \[\dfrac{{7\pi }}{{10}}\]
D. None of these
Answer
163.2k+ views
Hints Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate. Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression. Then use the sum formula of cosine and calculate to obtain the required result.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Formula used
\[\cos (\pi - x) = - \cos x\]
\[\sin (\pi - x) = \sin x\]
\[{\cos ^{ - 1}}\left[ {\cos ( - x)} \right] = \pi - x\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution
The given expression is,
\[{\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\dfrac{{9\pi }}{{10}}} \right) - \sin \left( {\dfrac{{9\pi }}{{10}}} \right)} \right]} \right\}\]
Express \[\dfrac{{9\pi }}{{10}}\] as\[\left( {\pi - \dfrac{\pi }{{10}}} \right)\] in the given expression and calculate.
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ {\cos \left( {\pi - \dfrac{\pi }{{10}}} \right) - \sin \left( {\pi - \dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
Use the formula \[\cos (\pi - x) = - \cos x\] and \[\sin (\pi - x) = \sin x\],
\[ = {\cos ^{ - 1}}\left\{ {\left( {\dfrac{1}{{\sqrt 2 }}} \right)\left[ { - \cos \left( {\dfrac{\pi }{{10}}} \right) - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right]} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \dfrac{1}{{\sqrt 2 }}.\cos \left( {\dfrac{\pi }{{10}}} \right) - \dfrac{1}{{\sqrt 2 }}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}\]
Substitute \[\dfrac{1}{{\sqrt 2 }}\] as \[\cos \dfrac{\pi }{4}\] or \[\sin \dfrac{\pi }{4}\] as required in the obtained expression.
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
\[ = {\cos ^{ - 1}}\left\{ { - \left\{ {\cos \dfrac{\pi }{4}.\cos \left( {\dfrac{\pi }{{10}}} \right) + \sin \dfrac{\pi }{4}.\sin \left( {\dfrac{\pi }{{10}}} \right)} \right\}} \right\}\]
Use the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\] for further calculation.
\[ = {\cos ^{ - 1}}\left\{ { - \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{{10}}} \right)} \right\}\]
\[ = \pi - {\cos ^{ - 1}}\left\{ {\cos \left( {\dfrac{{3\pi }}{{20}}} \right)} \right\}\]
\[ = \pi - \dfrac{{3\pi }}{{20}}\]
\[ = \dfrac{{17\pi }}{{20}}\]
The Correct option is B
Note To solve this type of problem students must aware of all the formula that are used in this problem, there are a lot of formulas used in this problem. If any one of the formulas is not applied properly then the we will not be able to solve the problem.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
