
Find the points common to the hyperbola $25{{\text{x}}^2} - {\text{9}}{{\text{y}}^2} = 225$ and the straight line $25{\text{x + 12y - 45 = 0}}$.
Answer
146.4k+ views
Hint:– Transform the equation of straight line such that the variable x is in terms of variable y. Substitute y in the equation of hyperbola. Obtain the value of y and substitute for x.
Complete step-by-step solution -
Given Data –
Equation of hyperbola $25{{\text{x}}^2} - {\text{9}}{{\text{y}}^2} = 225$ and Equation of straight line $25{\text{x + 12y - 45 = 0}}$.
Rewriting the equation of straight line, we get ${\text{x = }}\dfrac{{45 - 12{\text{y}}}}{{25}}{\text{ }} \to {\text{Equation 1}}$.
We found the value of x in terms of y.
Now substitute this x in the equation of hyperbola, we get
${\text{25}}{\left( {\dfrac{{45 - 12{\text{y}}}}{{25}}} \right)^2} - 9{{\text{y}}^2} = 225$
$
\Rightarrow 2025{\text{ + 144}}{{\text{y}}^2} - 1080{\text{y - 225}}{{\text{y}}^2} = 5625 \\
\Rightarrow 81{{\text{y}}^2} + 1080{\text{y + 3600 = 0}} \\
$
Upon simplifying,
$ \Rightarrow {\text{9}}{{\text{y}}^2} + 120{\text{y + 400 = 0}}$
Now solve this equation to get the values of y.
$
\Rightarrow {\left( {{\text{3y + 20}}} \right)^2} = 0 \\
\Rightarrow \left( {{\text{3y + 20}}} \right) = 0 \\
\Rightarrow {\text{y = }}\dfrac{{ - 20}}{3} \\
$
We have obtained the value of y, substituting this value in the Equation 1 gives us the value of x.
$
{\text{x = }}\dfrac{{45 - 12\left( {\dfrac{{ - 20}}{3}} \right)}}{{25}} = \dfrac{{45{\text{ + 80}}}}{{25}} = 5 \\
\left( {{\text{x,y}}} \right) = \left( {{\text{5,}}\dfrac{{ - 20}}{3}} \right) \\
$
The common point to the hyperbola and the straight line is$\left( {{\text{5,}}\dfrac{{ - 20}}{3}} \right)$.
Note:– In order to solve this type of question the key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation. On finding the value of one variable the other can be found simply by substituting.
Complete step-by-step solution -
Given Data –
Equation of hyperbola $25{{\text{x}}^2} - {\text{9}}{{\text{y}}^2} = 225$ and Equation of straight line $25{\text{x + 12y - 45 = 0}}$.
Rewriting the equation of straight line, we get ${\text{x = }}\dfrac{{45 - 12{\text{y}}}}{{25}}{\text{ }} \to {\text{Equation 1}}$.
We found the value of x in terms of y.
Now substitute this x in the equation of hyperbola, we get
${\text{25}}{\left( {\dfrac{{45 - 12{\text{y}}}}{{25}}} \right)^2} - 9{{\text{y}}^2} = 225$
$
\Rightarrow 2025{\text{ + 144}}{{\text{y}}^2} - 1080{\text{y - 225}}{{\text{y}}^2} = 5625 \\
\Rightarrow 81{{\text{y}}^2} + 1080{\text{y + 3600 = 0}} \\
$
Upon simplifying,
$ \Rightarrow {\text{9}}{{\text{y}}^2} + 120{\text{y + 400 = 0}}$
Now solve this equation to get the values of y.
$
\Rightarrow {\left( {{\text{3y + 20}}} \right)^2} = 0 \\
\Rightarrow \left( {{\text{3y + 20}}} \right) = 0 \\
\Rightarrow {\text{y = }}\dfrac{{ - 20}}{3} \\
$
We have obtained the value of y, substituting this value in the Equation 1 gives us the value of x.
$
{\text{x = }}\dfrac{{45 - 12\left( {\dfrac{{ - 20}}{3}} \right)}}{{25}} = \dfrac{{45{\text{ + 80}}}}{{25}} = 5 \\
\left( {{\text{x,y}}} \right) = \left( {{\text{5,}}\dfrac{{ - 20}}{3}} \right) \\
$
The common point to the hyperbola and the straight line is$\left( {{\text{5,}}\dfrac{{ - 20}}{3}} \right)$.
Note:– In order to solve this type of question the key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation. On finding the value of one variable the other can be found simply by substituting.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Electrical Field of Charged Spherical Shell - JEE
