
Find the one of the values of \[{\left( {\dfrac{{\left( {1 + i} \right)}}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\].
A. \[\sqrt 3 + i\]
B. \[ - i\]
C. \[i\]
D. \[ - \sqrt 3 + i\]
Answer
216.3k+ views
Hint First, we write given complex number in polar form \[\cos\theta + i\sin\theta \]. After that, convert the polar form into the exponential form \[{e^{i\theta }}\] and simplify it. Then apply the general formula \[{e^{i\theta }}=\cos\left( {2n + 1} \right)\theta + i\sin\left( {2n + 1} \right)\theta \]. After that we will substitute n=1 in the expression. Solve the expression to get the required answer.
Formula used
\[\cos\left( {\dfrac{\pi }{4}} \right) = \sin\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]
A complex number \[\cos\theta + i\sin\theta \] can be written as \[{e^{i\theta }}\].
The general form of a complex number \[{e^{i\theta }}\] is \[\cos\left( {2n + 1} \right)\theta + i\sin\left( {2n + 1} \right)\theta \].
Complete step by step solution:
The given complex number is \[{\left( {\dfrac{{\left( {1 + i} \right)}}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\].
Let consider,
\[z = {\left( {\dfrac{{\left( {1 + i} \right)}}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\]
Simplify the equation.
\[z = {\left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\]
Rewrite the above complex number in the polar form.
\[z = {\left( {\cos\left( {\dfrac{\pi }{4}} \right) + i\sin\left( {\dfrac{\pi }{4}} \right)} \right)^{\dfrac{2}{3}}}\] [ Since \[\cos\left( {\dfrac{\pi }{4}} \right) = \sin\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]]
Rewrite the above complex number in the exponential form.
\[z = {\left( {{e^{i\dfrac{\pi }{4}}}} \right)^{\dfrac{2}{3}}}\]
\[ \Rightarrow \]\[z = {e^{i\dfrac{\pi }{6}}}\] [ Since \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]]
Rewrite the complex number in the trigonometry form:
\[ \Rightarrow z = \cos \left( {2n + 1} \right)\dfrac{\pi }{6} + i\sin \left( {2n + 1} \right)\dfrac{\pi }{6}\]
Substitute \[n = 1\] in the above equation:
\[ \Rightarrow z = \cos \left( {3 \cdot \dfrac{\pi }{6}} \right) + i\sin \left( {3 \cdot \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow z = \cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}\]
\[ \Rightarrow z = 0 + i\left( 1 \right)\]
\[ \Rightarrow z = 0 + i\]
\[ \Rightarrow z = i\]
Hence the correct option is C.
Note: Students often do a common mistake to solve this question. They use \[\cos\theta + i\sin\theta ={e^{i\theta }}\] instead of the general form \[{e^{i\theta }}= \cos\left( {2n + 1} \right)\theta + i\sin\left( {2n + 1} \right)\theta \]. So that they get \[\dfrac{\sqrt{3}}{2}+i\dfrac{1}{2}\] which is an incorrect answer.
Formula used
\[\cos\left( {\dfrac{\pi }{4}} \right) = \sin\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]
A complex number \[\cos\theta + i\sin\theta \] can be written as \[{e^{i\theta }}\].
The general form of a complex number \[{e^{i\theta }}\] is \[\cos\left( {2n + 1} \right)\theta + i\sin\left( {2n + 1} \right)\theta \].
Complete step by step solution:
The given complex number is \[{\left( {\dfrac{{\left( {1 + i} \right)}}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\].
Let consider,
\[z = {\left( {\dfrac{{\left( {1 + i} \right)}}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\]
Simplify the equation.
\[z = {\left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}} \right)^{\dfrac{2}{3}}}\]
Rewrite the above complex number in the polar form.
\[z = {\left( {\cos\left( {\dfrac{\pi }{4}} \right) + i\sin\left( {\dfrac{\pi }{4}} \right)} \right)^{\dfrac{2}{3}}}\] [ Since \[\cos\left( {\dfrac{\pi }{4}} \right) = \sin\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]]
Rewrite the above complex number in the exponential form.
\[z = {\left( {{e^{i\dfrac{\pi }{4}}}} \right)^{\dfrac{2}{3}}}\]
\[ \Rightarrow \]\[z = {e^{i\dfrac{\pi }{6}}}\] [ Since \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]]
Rewrite the complex number in the trigonometry form:
\[ \Rightarrow z = \cos \left( {2n + 1} \right)\dfrac{\pi }{6} + i\sin \left( {2n + 1} \right)\dfrac{\pi }{6}\]
Substitute \[n = 1\] in the above equation:
\[ \Rightarrow z = \cos \left( {3 \cdot \dfrac{\pi }{6}} \right) + i\sin \left( {3 \cdot \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow z = \cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}\]
\[ \Rightarrow z = 0 + i\left( 1 \right)\]
\[ \Rightarrow z = 0 + i\]
\[ \Rightarrow z = i\]
Hence the correct option is C.
Note: Students often do a common mistake to solve this question. They use \[\cos\theta + i\sin\theta ={e^{i\theta }}\] instead of the general form \[{e^{i\theta }}= \cos\left( {2n + 1} \right)\theta + i\sin\left( {2n + 1} \right)\theta \]. So that they get \[\dfrac{\sqrt{3}}{2}+i\dfrac{1}{2}\] which is an incorrect answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

