
Find the \[{n^{th}}\] derivative of \[{\left( {x + 1} \right)^n}\]
A. \[\left( {n - 1} \right)!\]
B. \[\left( {n + 1} \right)!\]
C. \[n!\]
D. \[n{\left[ {\left( {n - 1} \right)} \right]^{n - 1}}\]
Answer
216.3k+ views
Hint: For finding the \[{n^{th}}\] derivative of \[{\left( {x + 1} \right)^n}\]. We will be differentiating \[{\left( {x + 1} \right)^n}\] for n times which means we will be differentiating it for the first derivative , second derivative , third derivative and so on.
Formula Used: We will be using basic formula of Differentiation which is \[\dfrac{d}{dx}{x^n} = n{\left( x \right)^{n - 1}}\]
Complete step by step solution
For finding the first derivative of \[{\left( {x + 1} \right)^n}\]we will differentiate it with respect to \[x\] .
Let \[y = {\left( {x + 1} \right)^n}\]
\[\therefore \dfrac{{dy}}{{dx}} = n{\left( {x + 1} \right)^{n - 1}}\]
Now we will be finding the second derivative of \[{\left( {x + 1} \right)^n}\]:-
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = n\left( {n - 1} \right){\left( {x + 1} \right)^{n - 2}}\]
Similarly we will find the \[{n^{th}}\] derivative of \[{\left( {x + 1} \right)^n}\].
\[\therefore \dfrac{{{d^n}y}}{{d{x^n}}} = n\left( {n - 1} \right)\left( {n - 2} \right)......3.2.1 \times {\left( {x + 1} \right)^{n - n}}\]
\[ = n!\]
Hence the answer is (C) which is\[ n!\].
Note: While solving the question we should stay focused on differentiating \[{\left( {x + 1} \right)^n}\] at least three times and then finding the \[{n^{th}}\] derivative and student should also remember the expansion of \[n!\] to find out which expansion has been created at the \[{n^{th}}\] derivative.
Formula Used: We will be using basic formula of Differentiation which is \[\dfrac{d}{dx}{x^n} = n{\left( x \right)^{n - 1}}\]
Complete step by step solution
For finding the first derivative of \[{\left( {x + 1} \right)^n}\]we will differentiate it with respect to \[x\] .
Let \[y = {\left( {x + 1} \right)^n}\]
\[\therefore \dfrac{{dy}}{{dx}} = n{\left( {x + 1} \right)^{n - 1}}\]
Now we will be finding the second derivative of \[{\left( {x + 1} \right)^n}\]:-
\[\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = n\left( {n - 1} \right){\left( {x + 1} \right)^{n - 2}}\]
Similarly we will find the \[{n^{th}}\] derivative of \[{\left( {x + 1} \right)^n}\].
\[\therefore \dfrac{{{d^n}y}}{{d{x^n}}} = n\left( {n - 1} \right)\left( {n - 2} \right)......3.2.1 \times {\left( {x + 1} \right)^{n - n}}\]
\[ = n!\]
Hence the answer is (C) which is\[ n!\].
Note: While solving the question we should stay focused on differentiating \[{\left( {x + 1} \right)^n}\] at least three times and then finding the \[{n^{th}}\] derivative and student should also remember the expansion of \[n!\] to find out which expansion has been created at the \[{n^{th}}\] derivative.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

