
Find the modulus, argument and the principal argument of the complex number
${{\left( \tan 1-i \right)}^{2}}$. \[\]
A.$\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ \[\]
B. $\text{Modulus}={{\operatorname{cosec}}^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( -2-\pi \right)$\[\]
C. $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=-\left( 2-\pi \right)$\[\]
D. $\text{Modulus}=\text{cose}{{\text{c}}^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$\[\]
Answer
216k+ views
Hint: We express the given complex number ${{\left( \tan 1-i \right)}^{2}}$ in the form $z=a+ib$. We find its modulus using the formula $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$, the principal argument using the formula $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]$ and all the arguments using the formula ${{\theta }_{n}}=\theta +2n\pi $ where $n\in Z.$\[\]
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]

The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]

The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Atomic Structure Explained: Key Concepts for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

