
Find the integral \[\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =\]
A. \[0\]
B. \[1\]
C. \[2\]
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $[-1,1]$. So, we can go for an even or odd function integral. By applying $\theta =-\theta $ in the given function, we can find that the function is an even or odd function. According to the type of the function, we can evaluate the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

