
Find the integral \[\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =\]
A. \[0\]
B. \[1\]
C. \[2\]
D. None of these
Answer
164.1k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $[-1,1]$. So, we can go for an even or odd function integral. By applying $\theta =-\theta $ in the given function, we can find that the function is an even or odd function. According to the type of the function, we can evaluate the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
