
Find the integral \[\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =\]
A. \[0\]
B. \[1\]
C. \[2\]
D. None of these
Answer
216k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $[-1,1]$. So, we can go for an even or odd function integral. By applying $\theta =-\theta $ in the given function, we can find that the function is an even or odd function. According to the type of the function, we can evaluate the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta \]
Since the limits of the given function are in the form of $[-a, a]$, we need to find the type of the function.
Consider the function in the given integral as
\[f(\theta )=\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)\]
So, substituting $\theta =-\theta $, we get
\[\begin{align}
& f(-\theta )=\log \left( \dfrac{2-\sin (-\theta )}{2+\sin (-\theta )} \right) \\
& \text{ }=\log \left( \dfrac{2+\sin \theta }{2-\sin \theta } \right) \\
& \text{ }=\log (2+\sin \theta )-\log (2-\sin \theta ) \\
& \text{ }=-\left[ \log (2-\sin \theta )-\log (2+\sin \theta ) \right] \\
& \text{ }=-\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right) \\
& \text{ }=-f(\theta ) \\
\end{align}\]
Since \[f(-\theta )=-f(\theta )\], the function in the given integral is an odd function. Thus, according to the formula we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
The given integral becomes
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\log \left( \dfrac{2-\sin \theta }{2+\sin \theta } \right)}d\theta =0\]
Option ‘A’ is correct
Note: In this question, we have trigonometric function in the integral. So, it is a little difficult to solve by a normal ILET integration method. Since the given integral has the limits in the interval of $[-a,a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $\theta =-\theta $ in the function $f(\theta )$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

