
Find the integral $\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $?
Answer
162.9k+ views
Hint: Before solving the question regenerate the limits because $\left| x \right|$ differs when $x \ge 0$ and $x < 0$.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
