
Find the integral $\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $?
Answer
164.7k+ views
Hint: Before solving the question regenerate the limits because $\left| x \right|$ differs when $x \ge 0$ and $x < 0$.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
