
Find the image of the point with the position vector \[i + 3k\] in the plane \[r \cdot \left( {i + j + k} \right) = 1\].
A. \[i + 2j + k\]
B. \[i + 2j - k\]
C. \[ - i - 2j + k\]
D. \[i - 2j + k\]
Answer
161.4k+ views
Hint: Assume that \[Q\] be the image of the point \[P\left( {i + 3k} \right)\]. Since the line \[PQ\] is perpendicular to plane \[r \cdot \left( {i + j + k} \right) = 1\], so the direction ratio of \[PQ\] will be \[i + j + k\]. By using the formula \[r = {r_0} + \lambda t\], we will find the equation of line \[PQ\]. Then we will find the midpoint of \[PQ\] and put it in the equation of the plane. After that, we will put the value of \[\lambda \] to get the vector \[Q\].
Formula used
The equation of the line is \[r = {r_0} + \lambda t\], where \[{r_0}\] is the point on the line and \[t\] is the direction ratio.
The midpoint of the points \[{x_1}i + {y_1}j + {z_1}k\] and \[{x_2}i + {y_2}j + {z_2}k\] is \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Dot product: \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
Complete step by step solution

Image: Image of the point (i+3k).
Let \[Q\] be the image of the point \[P\left( {i + 3k} \right)\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Since \[PQ\] is perpendicular to the plane \[r \cdot \left( {i + j + k} \right) = 1\], the direction ratios of \[PQ\] are \[i + j + k\].
The line \[PQ\] passes through the point \[P\left( {i + 3k} \right)\].
Apply the formula \[r = {r_0} + \lambda t\] to find the equation of line \[PQ\].
\[r = i + 3k + \lambda \left( {i + j + k} \right)\]
\[ \Rightarrow r = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
Any point on line \[r = i + 3k + \lambda \left( {i + j + k} \right)\] will be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Assume that the point of \[Q\] be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Let \[R\] be the midpoint of the segment \[PQ\].
Apply the formula \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\] to get the midpoint of \[PQ\].
Here \[{x_1}i + {y_1}j + {z_1}k = i + 3k\] and \[{x_2}i + {y_2}j + {z_2}k = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
The midpoint of \[PQ\] is \[\dfrac{{1 + 1 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{3 + 3 + \lambda }}{2}k\]
\[ = \dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k\]
Since the midpoint lies on the plane \[r \cdot \left( {i + j + k} \right) = 1\], so \[R\] will satisfy the plane.
\[\left( {\dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k} \right) \cdot \left( {i + j + k} \right) = 1\]
Apply the dot product on the left side \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} \cdot 1 + \dfrac{\lambda }{2} \cdot 1 + \dfrac{{6 + \lambda }}{2} \cdot 1 = 1\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} + \dfrac{\lambda }{2} + \dfrac{{6 + \lambda }}{2} = 1\]
Calculate the value of \[\lambda \] from the above equation
\[ \Rightarrow 2 + \lambda + \lambda + 6 + \lambda = 2\]
\[ \Rightarrow 3\lambda + 8 = 2\]
\[ \Rightarrow 3\lambda = - 6\]
\[ \Rightarrow \lambda = - 2\]
Now putting \[\lambda = - 2\] in \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
\[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k = \left( {1 - 2} \right)i + \left( { - 2} \right)j + \left( {3 - 2} \right)k\]
\[ = - i - 2j + k\]
Thus, the image of the point \[i + 3k\] is \[ - i - 2j + k\].
Note: Many students make a mistake to take the image point. They take \[R\] as the image on the plane. The distance of the point \[P\] from the plane is the same as the distance of the image point \[P\] from the plane.
Formula used
The equation of the line is \[r = {r_0} + \lambda t\], where \[{r_0}\] is the point on the line and \[t\] is the direction ratio.
The midpoint of the points \[{x_1}i + {y_1}j + {z_1}k\] and \[{x_2}i + {y_2}j + {z_2}k\] is \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Dot product: \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
Complete step by step solution

Image: Image of the point (i+3k).
Let \[Q\] be the image of the point \[P\left( {i + 3k} \right)\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Since \[PQ\] is perpendicular to the plane \[r \cdot \left( {i + j + k} \right) = 1\], the direction ratios of \[PQ\] are \[i + j + k\].
The line \[PQ\] passes through the point \[P\left( {i + 3k} \right)\].
Apply the formula \[r = {r_0} + \lambda t\] to find the equation of line \[PQ\].
\[r = i + 3k + \lambda \left( {i + j + k} \right)\]
\[ \Rightarrow r = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
Any point on line \[r = i + 3k + \lambda \left( {i + j + k} \right)\] will be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Assume that the point of \[Q\] be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Let \[R\] be the midpoint of the segment \[PQ\].
Apply the formula \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\] to get the midpoint of \[PQ\].
Here \[{x_1}i + {y_1}j + {z_1}k = i + 3k\] and \[{x_2}i + {y_2}j + {z_2}k = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
The midpoint of \[PQ\] is \[\dfrac{{1 + 1 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{3 + 3 + \lambda }}{2}k\]
\[ = \dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k\]
Since the midpoint lies on the plane \[r \cdot \left( {i + j + k} \right) = 1\], so \[R\] will satisfy the plane.
\[\left( {\dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k} \right) \cdot \left( {i + j + k} \right) = 1\]
Apply the dot product on the left side \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} \cdot 1 + \dfrac{\lambda }{2} \cdot 1 + \dfrac{{6 + \lambda }}{2} \cdot 1 = 1\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} + \dfrac{\lambda }{2} + \dfrac{{6 + \lambda }}{2} = 1\]
Calculate the value of \[\lambda \] from the above equation
\[ \Rightarrow 2 + \lambda + \lambda + 6 + \lambda = 2\]
\[ \Rightarrow 3\lambda + 8 = 2\]
\[ \Rightarrow 3\lambda = - 6\]
\[ \Rightarrow \lambda = - 2\]
Now putting \[\lambda = - 2\] in \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
\[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k = \left( {1 - 2} \right)i + \left( { - 2} \right)j + \left( {3 - 2} \right)k\]
\[ = - i - 2j + k\]
Thus, the image of the point \[i + 3k\] is \[ - i - 2j + k\].
Note: Many students make a mistake to take the image point. They take \[R\] as the image on the plane. The distance of the point \[P\] from the plane is the same as the distance of the image point \[P\] from the plane.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
