
Find the image of the point with the position vector \[i + 3k\] in the plane \[r \cdot \left( {i + j + k} \right) = 1\].
A. \[i + 2j + k\]
B. \[i + 2j - k\]
C. \[ - i - 2j + k\]
D. \[i - 2j + k\]
Answer
216k+ views
Hint: Assume that \[Q\] be the image of the point \[P\left( {i + 3k} \right)\]. Since the line \[PQ\] is perpendicular to plane \[r \cdot \left( {i + j + k} \right) = 1\], so the direction ratio of \[PQ\] will be \[i + j + k\]. By using the formula \[r = {r_0} + \lambda t\], we will find the equation of line \[PQ\]. Then we will find the midpoint of \[PQ\] and put it in the equation of the plane. After that, we will put the value of \[\lambda \] to get the vector \[Q\].
Formula used
The equation of the line is \[r = {r_0} + \lambda t\], where \[{r_0}\] is the point on the line and \[t\] is the direction ratio.
The midpoint of the points \[{x_1}i + {y_1}j + {z_1}k\] and \[{x_2}i + {y_2}j + {z_2}k\] is \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Dot product: \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
Complete step by step solution

Image: Image of the point (i+3k).
Let \[Q\] be the image of the point \[P\left( {i + 3k} \right)\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Since \[PQ\] is perpendicular to the plane \[r \cdot \left( {i + j + k} \right) = 1\], the direction ratios of \[PQ\] are \[i + j + k\].
The line \[PQ\] passes through the point \[P\left( {i + 3k} \right)\].
Apply the formula \[r = {r_0} + \lambda t\] to find the equation of line \[PQ\].
\[r = i + 3k + \lambda \left( {i + j + k} \right)\]
\[ \Rightarrow r = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
Any point on line \[r = i + 3k + \lambda \left( {i + j + k} \right)\] will be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Assume that the point of \[Q\] be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Let \[R\] be the midpoint of the segment \[PQ\].
Apply the formula \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\] to get the midpoint of \[PQ\].
Here \[{x_1}i + {y_1}j + {z_1}k = i + 3k\] and \[{x_2}i + {y_2}j + {z_2}k = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
The midpoint of \[PQ\] is \[\dfrac{{1 + 1 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{3 + 3 + \lambda }}{2}k\]
\[ = \dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k\]
Since the midpoint lies on the plane \[r \cdot \left( {i + j + k} \right) = 1\], so \[R\] will satisfy the plane.
\[\left( {\dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k} \right) \cdot \left( {i + j + k} \right) = 1\]
Apply the dot product on the left side \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} \cdot 1 + \dfrac{\lambda }{2} \cdot 1 + \dfrac{{6 + \lambda }}{2} \cdot 1 = 1\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} + \dfrac{\lambda }{2} + \dfrac{{6 + \lambda }}{2} = 1\]
Calculate the value of \[\lambda \] from the above equation
\[ \Rightarrow 2 + \lambda + \lambda + 6 + \lambda = 2\]
\[ \Rightarrow 3\lambda + 8 = 2\]
\[ \Rightarrow 3\lambda = - 6\]
\[ \Rightarrow \lambda = - 2\]
Now putting \[\lambda = - 2\] in \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
\[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k = \left( {1 - 2} \right)i + \left( { - 2} \right)j + \left( {3 - 2} \right)k\]
\[ = - i - 2j + k\]
Thus, the image of the point \[i + 3k\] is \[ - i - 2j + k\].
Note: Many students make a mistake to take the image point. They take \[R\] as the image on the plane. The distance of the point \[P\] from the plane is the same as the distance of the image point \[P\] from the plane.
Formula used
The equation of the line is \[r = {r_0} + \lambda t\], where \[{r_0}\] is the point on the line and \[t\] is the direction ratio.
The midpoint of the points \[{x_1}i + {y_1}j + {z_1}k\] and \[{x_2}i + {y_2}j + {z_2}k\] is \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Dot product: \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
Complete step by step solution

Image: Image of the point (i+3k).
Let \[Q\] be the image of the point \[P\left( {i + 3k} \right)\].
The direction ratio of a line is equal to the direction ratio of the perpendicular plane of the line.
Since \[PQ\] is perpendicular to the plane \[r \cdot \left( {i + j + k} \right) = 1\], the direction ratios of \[PQ\] are \[i + j + k\].
The line \[PQ\] passes through the point \[P\left( {i + 3k} \right)\].
Apply the formula \[r = {r_0} + \lambda t\] to find the equation of line \[PQ\].
\[r = i + 3k + \lambda \left( {i + j + k} \right)\]
\[ \Rightarrow r = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
Any point on line \[r = i + 3k + \lambda \left( {i + j + k} \right)\] will be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Assume that the point of \[Q\] be \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\].
Let \[R\] be the midpoint of the segment \[PQ\].
Apply the formula \[\dfrac{{\left( {{x_1} + {x_2}} \right)i + \left( {{y_1} + {y_2}} \right)j + \left( {{z_1} + {z_2}} \right)k}}{2}\] to get the midpoint of \[PQ\].
Here \[{x_1}i + {y_1}j + {z_1}k = i + 3k\] and \[{x_2}i + {y_2}j + {z_2}k = \left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
The midpoint of \[PQ\] is \[\dfrac{{1 + 1 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{3 + 3 + \lambda }}{2}k\]
\[ = \dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k\]
Since the midpoint lies on the plane \[r \cdot \left( {i + j + k} \right) = 1\], so \[R\] will satisfy the plane.
\[\left( {\dfrac{{2 + \lambda }}{2}i + \dfrac{\lambda }{2}j + \dfrac{{6 + \lambda }}{2}k} \right) \cdot \left( {i + j + k} \right) = 1\]
Apply the dot product on the left side \[\left( {{a_1}i + {b_1}j + {c_1}k} \right) \cdot \left( {{a_2}i + {b_2}j + {c_2}k} \right) = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} \cdot 1 + \dfrac{\lambda }{2} \cdot 1 + \dfrac{{6 + \lambda }}{2} \cdot 1 = 1\]
\[ \Rightarrow \dfrac{{2 + \lambda }}{2} + \dfrac{\lambda }{2} + \dfrac{{6 + \lambda }}{2} = 1\]
Calculate the value of \[\lambda \] from the above equation
\[ \Rightarrow 2 + \lambda + \lambda + 6 + \lambda = 2\]
\[ \Rightarrow 3\lambda + 8 = 2\]
\[ \Rightarrow 3\lambda = - 6\]
\[ \Rightarrow \lambda = - 2\]
Now putting \[\lambda = - 2\] in \[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k\]
\[\left( {1 + \lambda } \right)i + \lambda j + \left( {3 + \lambda } \right)k = \left( {1 - 2} \right)i + \left( { - 2} \right)j + \left( {3 - 2} \right)k\]
\[ = - i - 2j + k\]
Thus, the image of the point \[i + 3k\] is \[ - i - 2j + k\].
Note: Many students make a mistake to take the image point. They take \[R\] as the image on the plane. The distance of the point \[P\] from the plane is the same as the distance of the image point \[P\] from the plane.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

