
$
{\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text{ and the vertex}} \\
{\text{is at }}\left( { - 2,2} \right). \\
$
Answer
145.5k+ views
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
