
Find the domain of definition of the function \[f\left( x \right) = \sqrt {{{\log }_{10}}\dfrac{{\left[ {5x - {x^2}} \right]}}{4}} \] is
A. \[\left[ {1,4} \right]\]
B. \[\left[ {1,0} \right]\]
C. \[\left[ {0,5} \right]\]
D. \[\left[ {5,0} \right]\]
Answer
216.9k+ views
Hint: We have to find the domain of the given function \[f\left( x \right) = \sqrt {{{\log }_{10}}\dfrac{{\left[ {5x - {x^2}} \right]}}{4}} \]. We will find the value of \[x\] for which numerator are defined and we will apply the standard condition of logarithm function to be defined and square root function to be defined. So, by applying all these facts we can get the values of \[x\].
Formula Used:
The basic logarithmic expansion formula are given as
1. \[\begin{array}{l}{\log _b}m = x\\ \Rightarrow m = {b^x}\end{array}\]
2. \[{a^0} = 1\] where \[a \in R\]
Complete step-by-step solution:
Given that the function is\[f\left( x \right) = \sqrt {{{\log }_{10}}\dfrac{{\left[ {5x - {x^2}} \right]}}{4}} \]…(1)
We will find the domain of the given function by making two cases.
As we know that the quantity of logarithmic function is always greater then zero.
So, the first case is \[\dfrac{{5x - {x^2}}}{4} > 0\].
Now, we will simplify the above expression and find a quadratic equation.
\[\begin{array}{l}5x - {x^2} > 0 \times 4\\5x - {x^2} > 0\end{array}\]
Further, we will multiply the quadratic function with minus sign and we know that if any equation is multiply with minus sign then the inequality sign changes, we get
\[\begin{array}{l} - \left( {5x - {x^2}} \right) < 0\\{x^2} - 5x < 0\end{array}\]
Furthermore, we will simplify the above quadratic equation with factorization by taking out the common factor, we get
\[x\left( {x - 5} \right) < 0\]
So, there are two values of \[x\], we get
\[x < 0\] and \[x < 5\]
From above the domain of function lies in open bracket because the inequality is not with the equal sign.
Thus, the domain is \[x \in \left( {0,5} \right)\].
As we also know that the value under square root will never be negative.
So, the second case is \[{\log _{10}}\left( {\dfrac{{5x - {x^2}}}{4}} \right) \ge 0\].
Now, we will apply the logarithmic function expansion that is \[{\log _b}m = x\] then
\[m = {b^x}\], we get
\[\dfrac{{5x - {x^2}}}{4} \ge {\left( {10} \right)^0}\]
Further, we will apply the formula \[{a^0} = 1\] where \[a \in R\], we get
\[\dfrac{{5x - {x^2}}}{4} \ge 1\]
Furthermore, we will simplify the above expression to find quadratic equation, we get
\[\begin{array}{l}5x - {x^2} \ge 4\\5x - {x^2} - 4 \ge 0\end{array}\]
Now, we will multiply the quadratic function with minus sign and we know that if any equation is multiply with minus sign then the inequality sign changes, we get
\[{x^2} - 5x + 4 \le 0\]
Further, we will apply the factorisation method to find the roots of \[x\], we get
\[\begin{array}{l}{x^2} - 4x - x + 4 \le 0\\x\left( {x - 4} \right) - 1\left( {x - 4} \right) \le 0\end{array}\]
Furthermore, we will simplify the above quadratic equation with factorization by taking out the common factor, we get
\[\left( {x - 4} \right)\left( {x - 1} \right) \le 0\]
So, there are two values of \[x\], we get
\[x \le 1\] and \[x \le 4\]
From above the domain of function lies in a close bracket because the inequality is with the equal sign.
Thus, the domain is \[x \in \left[ {1,4} \right]\].
Hence, the option (A) is correct
Note: In these types of questions always try to satisfy the given function. The limitations of all functions like square root, logarithm function, trigonometric function, etc must satisfy some conditions to be defined.
Formula Used:
The basic logarithmic expansion formula are given as
1. \[\begin{array}{l}{\log _b}m = x\\ \Rightarrow m = {b^x}\end{array}\]
2. \[{a^0} = 1\] where \[a \in R\]
Complete step-by-step solution:
Given that the function is\[f\left( x \right) = \sqrt {{{\log }_{10}}\dfrac{{\left[ {5x - {x^2}} \right]}}{4}} \]…(1)
We will find the domain of the given function by making two cases.
As we know that the quantity of logarithmic function is always greater then zero.
So, the first case is \[\dfrac{{5x - {x^2}}}{4} > 0\].
Now, we will simplify the above expression and find a quadratic equation.
\[\begin{array}{l}5x - {x^2} > 0 \times 4\\5x - {x^2} > 0\end{array}\]
Further, we will multiply the quadratic function with minus sign and we know that if any equation is multiply with minus sign then the inequality sign changes, we get
\[\begin{array}{l} - \left( {5x - {x^2}} \right) < 0\\{x^2} - 5x < 0\end{array}\]
Furthermore, we will simplify the above quadratic equation with factorization by taking out the common factor, we get
\[x\left( {x - 5} \right) < 0\]
So, there are two values of \[x\], we get
\[x < 0\] and \[x < 5\]
From above the domain of function lies in open bracket because the inequality is not with the equal sign.
Thus, the domain is \[x \in \left( {0,5} \right)\].
As we also know that the value under square root will never be negative.
So, the second case is \[{\log _{10}}\left( {\dfrac{{5x - {x^2}}}{4}} \right) \ge 0\].
Now, we will apply the logarithmic function expansion that is \[{\log _b}m = x\] then
\[m = {b^x}\], we get
\[\dfrac{{5x - {x^2}}}{4} \ge {\left( {10} \right)^0}\]
Further, we will apply the formula \[{a^0} = 1\] where \[a \in R\], we get
\[\dfrac{{5x - {x^2}}}{4} \ge 1\]
Furthermore, we will simplify the above expression to find quadratic equation, we get
\[\begin{array}{l}5x - {x^2} \ge 4\\5x - {x^2} - 4 \ge 0\end{array}\]
Now, we will multiply the quadratic function with minus sign and we know that if any equation is multiply with minus sign then the inequality sign changes, we get
\[{x^2} - 5x + 4 \le 0\]
Further, we will apply the factorisation method to find the roots of \[x\], we get
\[\begin{array}{l}{x^2} - 4x - x + 4 \le 0\\x\left( {x - 4} \right) - 1\left( {x - 4} \right) \le 0\end{array}\]
Furthermore, we will simplify the above quadratic equation with factorization by taking out the common factor, we get
\[\left( {x - 4} \right)\left( {x - 1} \right) \le 0\]
So, there are two values of \[x\], we get
\[x \le 1\] and \[x \le 4\]
From above the domain of function lies in a close bracket because the inequality is with the equal sign.
Thus, the domain is \[x \in \left[ {1,4} \right]\].
Hence, the option (A) is correct
Note: In these types of questions always try to satisfy the given function. The limitations of all functions like square root, logarithm function, trigonometric function, etc must satisfy some conditions to be defined.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

