
Find the derivative of the following: - \[y={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}\]
Answer
145.2k+ views
Hint: Use basic formulae for derivative of \[{{a}^{x}},{{x}^{a}}\And {{e}^{x}}\].
We have expression/function
\[y={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}-(1)\]
Now, let us differentiate the given function as,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{2}^{x}}-3{{e}^{x}}-{{4}^{x}} \right)\]
One important rule should be applied here as stated below:
If we have $n$ functions ${{f}_{1}}(x),{{f}_{2}}(x),{{f}_{3}}(x)......{{f}_{n}}(x)$ and ${{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}}......{{\lambda }_{n}}$ are constants in function $'y'$ as written below:
$y={{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x)$.
Now, if we differentiate the above given function $y$ , then we will get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x) \right] \\
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{2}}{{f}_{2}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{3}}{{f}_{3}}(x) \right]+....+\dfrac{d}{dx}\left[ {{\lambda }_{n}}{{f}_{n}}(x) \right] \\
& \dfrac{dy}{dx}={{\lambda }_{1}}\dfrac{d}{dx}\left[ {{f}_{1}}(x) \right]+{{\lambda }_{2}}\dfrac{d}{dx}\left[ {{f}_{2}}(x) \right]+{{\lambda }_{3}}\dfrac{d}{dx}\left[ {{f}_{3}}(x) \right]+....+{{\lambda }_{n}}\dfrac{d}{dx}\left[ {{f}_{n}}(x) \right]........(2) \\
\end{align}$
So if functions are written in summation, then we can differentiate them individually. Using the above property in equation (1) as follows:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}({{2}^{x}}-3{{e}^{x}}-{{4}^{x}}) \\
& \dfrac{d}{dx}=\dfrac{d}{dx}({{2}^{x}})-\dfrac{d}{dx}(3{{e}^{x}})-\dfrac{d}{dx}({{4}^{x}}) \\
\end{align}\]
Here, we can observe that ${{2}^{x}}$ is of type (Constant)function or ${{(\lambda )}^{f(x)}}$\ . So, we have formula for it as,
$\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$
Hence,
$\dfrac{d}{dx}({{2}^{x}})={{2}^{x}}\ln 2.........(4)$
Now, ${{e}^{x}}$ is exponential function and derivative of it is given as,
$\dfrac{d}{dx}({{e}^{x}})={{e}^{x}}........(5)$
Similarly, $\dfrac{d}{dx}({{4}^{x}})$ can be calculated by $\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$ formula as,
$\dfrac{d}{dx}({{4}^{x}})={{4}^{x}}\ln 4.........(6)$
Putting the values of equation (4), (5) and (6) in equation (3) for calculating,
\[\dfrac{dy}{dx}={{2}^{x}}\ln 2-3{{e}^{x}}-{{4}^{x}}\ln 4\]
Note: Student need to very clear with the functions like ${{a}^{x}},{{x}^{a}},{{x}^{x}},{{a}^{a}}$ .
Now we can calculate the differentiation of above by applying the multiplication rule.
Therefore, we need to be very clear with the above discussed functions and their differentiation.
So, we need to be very clear with the basic formulas.
The common mistake is student forget to notice (Constant)function or ${{(\lambda )}^{f(x)}}$kind of function and makes mistake in correct calculation, i.e.,
$\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$
We have expression/function
\[y={{2}^{x}}-3{{e}^{x}}-{{4}^{x}}-(1)\]
Now, let us differentiate the given function as,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{2}^{x}}-3{{e}^{x}}-{{4}^{x}} \right)\]
One important rule should be applied here as stated below:
If we have $n$ functions ${{f}_{1}}(x),{{f}_{2}}(x),{{f}_{3}}(x)......{{f}_{n}}(x)$ and ${{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}}......{{\lambda }_{n}}$ are constants in function $'y'$ as written below:
$y={{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x)$.
Now, if we differentiate the above given function $y$ , then we will get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x)+{{\lambda }_{2}}{{f}_{2}}(x)+{{\lambda }_{3}}{{f}_{3}}(x)+......+{{\lambda }_{n}}{{f}_{n}}(x) \right] \\
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\lambda }_{1}}{{f}_{1}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{2}}{{f}_{2}}(x) \right]+\dfrac{d}{dx}\left[ {{\lambda }_{3}}{{f}_{3}}(x) \right]+....+\dfrac{d}{dx}\left[ {{\lambda }_{n}}{{f}_{n}}(x) \right] \\
& \dfrac{dy}{dx}={{\lambda }_{1}}\dfrac{d}{dx}\left[ {{f}_{1}}(x) \right]+{{\lambda }_{2}}\dfrac{d}{dx}\left[ {{f}_{2}}(x) \right]+{{\lambda }_{3}}\dfrac{d}{dx}\left[ {{f}_{3}}(x) \right]+....+{{\lambda }_{n}}\dfrac{d}{dx}\left[ {{f}_{n}}(x) \right]........(2) \\
\end{align}$
So if functions are written in summation, then we can differentiate them individually. Using the above property in equation (1) as follows:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}({{2}^{x}}-3{{e}^{x}}-{{4}^{x}}) \\
& \dfrac{d}{dx}=\dfrac{d}{dx}({{2}^{x}})-\dfrac{d}{dx}(3{{e}^{x}})-\dfrac{d}{dx}({{4}^{x}}) \\
\end{align}\]
Here, we can observe that ${{2}^{x}}$ is of type (Constant)function or ${{(\lambda )}^{f(x)}}$\ . So, we have formula for it as,
$\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$
Hence,
$\dfrac{d}{dx}({{2}^{x}})={{2}^{x}}\ln 2.........(4)$
Now, ${{e}^{x}}$ is exponential function and derivative of it is given as,
$\dfrac{d}{dx}({{e}^{x}})={{e}^{x}}........(5)$
Similarly, $\dfrac{d}{dx}({{4}^{x}})$ can be calculated by $\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$ formula as,
$\dfrac{d}{dx}({{4}^{x}})={{4}^{x}}\ln 4.........(6)$
Putting the values of equation (4), (5) and (6) in equation (3) for calculating,
\[\dfrac{dy}{dx}={{2}^{x}}\ln 2-3{{e}^{x}}-{{4}^{x}}\ln 4\]
Note: Student need to very clear with the functions like ${{a}^{x}},{{x}^{a}},{{x}^{x}},{{a}^{a}}$ .
Now we can calculate the differentiation of above by applying the multiplication rule.
Therefore, we need to be very clear with the above discussed functions and their differentiation.
So, we need to be very clear with the basic formulas.
The common mistake is student forget to notice (Constant)function or ${{(\lambda )}^{f(x)}}$kind of function and makes mistake in correct calculation, i.e.,
$\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\ln a$
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
