
Find ${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=$
A. ${{\log }_{e}}\dfrac{1}{2}$
B. $2\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+...\infty \right]$
C. $2\left[ {{x}^{2}}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty \right]$
D. None of these
Answer
218.4k+ views
Hint: In this question, we are to find the expansion of the given logarithmic function. For this, we need to use the logarithmic functions and expansions such as ${{\log }_{e}}(1+x)$ and ${{\log }_{e}}(1-x)$. By simplifying them, we get the required expansion of the given logarithmic function.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

