
Find ${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=$
A. ${{\log }_{e}}\dfrac{1}{2}$
B. $2\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+...\infty \right]$
C. $2\left[ {{x}^{2}}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty \right]$
D. None of these
Answer
162.3k+ views
Hint: In this question, we are to find the expansion of the given logarithmic function. For this, we need to use the logarithmic functions and expansions such as ${{\log }_{e}}(1+x)$ and ${{\log }_{e}}(1-x)$. By simplifying them, we get the required expansion of the given logarithmic function.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
