
Find $\left( \dfrac{a-b}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{a-b}{a} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{a-b}{a} \right)}^{3}}+...\infty =$
A. ${{\log }_{e}}\left( a-b \right)$
B. ${{\log }_{e}}\left( \dfrac{a}{b} \right)$
C. ${{\log }_{e}}\left( \dfrac{b}{a} \right)$
D. ${{e}^{\left( \dfrac{a-b}{a} \right)}}$
Answer
232.8k+ views
Hint: In this question, we are to find the sum of the given series. For this, we need to apply the logarithmic series formula. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\left( \dfrac{a-b}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{a-b}{a} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{a-b}{a} \right)}^{3}}+...\infty $
Rewriting the given series as
$\left( \dfrac{a-b}{a} \right)+\dfrac{{{\left( \dfrac{a-b}{a} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{a-b}{a} \right)}^{3}}}{3}+...\infty $
But we have a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(2) \\
\end{align}$
So, by comparing (1) and (2), we get
$x=\dfrac{a-b}{a}$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& -{{\log }_{e}}(1-x)=-{{\log }_{e}}(1-\dfrac{a-b}{a}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{a-a+b}{a} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{b}{a} \right) \\
\end{align}$
Since there is a negative sign before the log function, we use the property,
$-\log \left( \dfrac{x}{y} \right)=\log \left( \dfrac{y}{x} \right)$
Then,
$-{{\log }_{e}}\left( \dfrac{b}{a} \right)={{\log }_{e}}\left( \dfrac{a}{b} \right)$
Thus, the sum is
$\left( \dfrac{a-b}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{a-b}{a} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{a-b}{a} \right)}^{3}}+...\infty ={{\log }_{e}}\left( \dfrac{a}{b} \right)$
Option ‘B’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=\dfrac{a-b}{a}$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\left( \dfrac{a-b}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{a-b}{a} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{a-b}{a} \right)}^{3}}+...\infty $
Rewriting the given series as
$\left( \dfrac{a-b}{a} \right)+\dfrac{{{\left( \dfrac{a-b}{a} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{a-b}{a} \right)}^{3}}}{3}+...\infty $
But we have a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(2) \\
\end{align}$
So, by comparing (1) and (2), we get
$x=\dfrac{a-b}{a}$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& -{{\log }_{e}}(1-x)=-{{\log }_{e}}(1-\dfrac{a-b}{a}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{a-a+b}{a} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{b}{a} \right) \\
\end{align}$
Since there is a negative sign before the log function, we use the property,
$-\log \left( \dfrac{x}{y} \right)=\log \left( \dfrac{y}{x} \right)$
Then,
$-{{\log }_{e}}\left( \dfrac{b}{a} \right)={{\log }_{e}}\left( \dfrac{a}{b} \right)$
Thus, the sum is
$\left( \dfrac{a-b}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{a-b}{a} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{a-b}{a} \right)}^{3}}+...\infty ={{\log }_{e}}\left( \dfrac{a}{b} \right)$
Option ‘B’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=\dfrac{a-b}{a}$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

