
Find for which real value x, the expression \[2(k - x)\left[ {x + \sqrt {{x^2} + {k^2}} } \right]\] cannot exceed
A.\[4{k^2}\]
B. \[2{k^2}\]
C. \[5{k^2}\]
D. None of these
Answer
164.7k+ views
Hint: Suppose the given expression as y, then form quadratic equation of x. Set the discriminant for greater or equal to zero and solve to obtain the required answer.
Formula used:
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[D = {b^2} - 4ac\] .
For real values of x, \[D \ge 0\] .
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step solution:
Suppose that,
\[y = 2(k - x)\left[ {x + \sqrt {{x^2} + {k^2}} } \right]\]
\[\dfrac{y}{{2(k - x)}} = \left[ {x + \sqrt {{x^2} + {k^2}} } \right]\]
\[\dfrac{y}{{2(k - x)}} - x = \sqrt {{x^2} + {k^2}} \]
Square both sides of the equation,
\[{\left( {\dfrac{y}{{2(k - x)}} - x} \right)^2} = {\left( {\sqrt {{x^2} + {k^2}} } \right)^2}\]
\[{x^2} - 2.x.\dfrac{y}{{2(k - x)}} + {\left( {\dfrac{y}{{2(k - x)}}} \right)^2} = {x^2} + {k^2}\]
Cancel out the term \[{x^2}\] from both sides,
\[\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}} = {k^2}\]
Multiply \[4{(k - x)^2}\] to both sides of the equation \[\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}} = {k^2}\].
\[4{\left( {k - x} \right)^2}\left[ {\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}}} \right] = 4{\left( {k - x} \right)^2} \times {k^2}\]
\[{y^2} - 4xy(k - x) - 4{k^2}{(k - x)^2} = 0\]
\[{y^2} - 4xyk + 4{x^2}y - 4{k^2}\left( {{k^2} - 2kx + {x^2}} \right) = 0\]
\[{y^2} - 4xyk + 4{x^2}y - 4{k^4} + 8{k^3}x - 4{k^2}{x^2} = 0\]
\[4{x^2}(y - {k^2}) - 4kx(y - 2{k^2}) + {y^2} - 4{k^4} = 0\]
This is a quadratic equation of x,
Therefore, the discriminant is greater or equal to zero for real values of x.
\[16{k^2}{\left( {y - 2{k^2}} \right)^2} - 16\left( {y - {k^2}} \right)\left( {{y^2} - 4{k^4}} \right) \ge 0\]
\[{k^2}{\left( {y - 2{k^2}} \right)^2} - \left( {y - {k^2}} \right)\left( {{y^2} - 4{k^4}} \right) \ge 0\]
\[{k^2}\left[ {{y^2} - 4y{k^2} + 4{k^4}} \right] - \left[ {{y^3} - 4y{k^4} - {k^2}{y^2} + 4{k^6}} \right] \ge 0\]
\[{k^2}{y^2} - 4y{k^4} + 4{k^6} - {y^3} + 4y{k^4} + {k^2}{y^2} - 4{k^6} \ge 0\]
\[2{k^2}{y^2} - {y^3} \ge 0\]
\[{y^2}\left[ {2{k^2} - y} \right] \ge 0\]
Now, \[y \ge 0,y \le 2{k^2}\]
\[ \Rightarrow 0 \le y \le 2{k^2}\]
The correct option is B.
Note: Sometime students get confused and set the discriminant as zero and calculate to obtain the values of x, but as the question is two find the value of x for which x cannot exceed the given expression hence, we have to set the discriminant as greater equal to zero.
Formula used:
The discriminant of a quadratic equation \[a{x^2} + bx + c = 0\] is \[D = {b^2} - 4ac\] .
For real values of x, \[D \ge 0\] .
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step solution:
Suppose that,
\[y = 2(k - x)\left[ {x + \sqrt {{x^2} + {k^2}} } \right]\]
\[\dfrac{y}{{2(k - x)}} = \left[ {x + \sqrt {{x^2} + {k^2}} } \right]\]
\[\dfrac{y}{{2(k - x)}} - x = \sqrt {{x^2} + {k^2}} \]
Square both sides of the equation,
\[{\left( {\dfrac{y}{{2(k - x)}} - x} \right)^2} = {\left( {\sqrt {{x^2} + {k^2}} } \right)^2}\]
\[{x^2} - 2.x.\dfrac{y}{{2(k - x)}} + {\left( {\dfrac{y}{{2(k - x)}}} \right)^2} = {x^2} + {k^2}\]
Cancel out the term \[{x^2}\] from both sides,
\[\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}} = {k^2}\]
Multiply \[4{(k - x)^2}\] to both sides of the equation \[\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}} = {k^2}\].
\[4{\left( {k - x} \right)^2}\left[ {\dfrac{{{y^2}}}{{4{{\left( {k - x} \right)}^2}}} - \dfrac{{xy}}{{k - x}}} \right] = 4{\left( {k - x} \right)^2} \times {k^2}\]
\[{y^2} - 4xy(k - x) - 4{k^2}{(k - x)^2} = 0\]
\[{y^2} - 4xyk + 4{x^2}y - 4{k^2}\left( {{k^2} - 2kx + {x^2}} \right) = 0\]
\[{y^2} - 4xyk + 4{x^2}y - 4{k^4} + 8{k^3}x - 4{k^2}{x^2} = 0\]
\[4{x^2}(y - {k^2}) - 4kx(y - 2{k^2}) + {y^2} - 4{k^4} = 0\]
This is a quadratic equation of x,
Therefore, the discriminant is greater or equal to zero for real values of x.
\[16{k^2}{\left( {y - 2{k^2}} \right)^2} - 16\left( {y - {k^2}} \right)\left( {{y^2} - 4{k^4}} \right) \ge 0\]
\[{k^2}{\left( {y - 2{k^2}} \right)^2} - \left( {y - {k^2}} \right)\left( {{y^2} - 4{k^4}} \right) \ge 0\]
\[{k^2}\left[ {{y^2} - 4y{k^2} + 4{k^4}} \right] - \left[ {{y^3} - 4y{k^4} - {k^2}{y^2} + 4{k^6}} \right] \ge 0\]
\[{k^2}{y^2} - 4y{k^4} + 4{k^6} - {y^3} + 4y{k^4} + {k^2}{y^2} - 4{k^6} \ge 0\]
\[2{k^2}{y^2} - {y^3} \ge 0\]
\[{y^2}\left[ {2{k^2} - y} \right] \ge 0\]
Now, \[y \ge 0,y \le 2{k^2}\]
\[ \Rightarrow 0 \le y \le 2{k^2}\]
The correct option is B.
Note: Sometime students get confused and set the discriminant as zero and calculate to obtain the values of x, but as the question is two find the value of x for which x cannot exceed the given expression hence, we have to set the discriminant as greater equal to zero.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
