
Find $\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=$
A. ${{\log }_{b}}a$
B. ${{\log }_{a}}b$
C. ${{\log }_{e}}a-{{\log }_{e}}b$
D. ${{\log }_{e}}a+{{\log }_{e}}b$
Answer
218.1k+ views
Hint: In this question, we are to find the given expression. For this, we need to apply the logarithmic series formula. Since the given expression is in rational form, we need to calculate the sum of both series. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

