
Find $\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=$
A. ${{\log }_{b}}a$
B. ${{\log }_{a}}b$
C. ${{\log }_{e}}a-{{\log }_{e}}b$
D. ${{\log }_{e}}a+{{\log }_{e}}b$
Answer
163.2k+ views
Hint: In this question, we are to find the given expression. For this, we need to apply the logarithmic series formula. Since the given expression is in rational form, we need to calculate the sum of both series. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
