
Find $\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=$
A. ${{\log }_{b}}a$
B. ${{\log }_{a}}b$
C. ${{\log }_{e}}a-{{\log }_{e}}b$
D. ${{\log }_{e}}a+{{\log }_{e}}b$
Answer
161.7k+ views
Hint: In this question, we are to find the given expression. For this, we need to apply the logarithmic series formula. Since the given expression is in rational form, we need to calculate the sum of both series. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }$
The series in the numerator is
$\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty \text{ }...(1)$
The series in the denominator is
$\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty \text{ }...(2)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(3)$
So, by comparing (1) and (3), we get
$x=a-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(a-1)) \\
& \Rightarrow {{\log }_{e}}a \\
\end{align}$
Now, by comparing (2) and (3), we get
$x=b-1$
Thus, on substituting this value into the logarithmic function in (3), we get
$\begin{align}
& {{\log }_{e}}(1+x)={{\log }_{e}}(1+(b-1)) \\
& \Rightarrow {{\log }_{e}}b \\
\end{align}$
Thus, the given expression is
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}$
But we have the property
${{\log }_{n}}m=\dfrac{{{\log }_{e}}m}{{{\log }_{e}}n}$
So, we can write
$\dfrac{\left( a-1 \right)-\dfrac{{{\left( a-1 \right)}^{2}}}{2}+\dfrac{{{\left( a-1 \right)}^{3}}}{3}-...\infty }{\left( b-1 \right)-\dfrac{{{\left( b-1 \right)}^{2}}}{2}+\dfrac{{{\left( b-1 \right)}^{3}}}{3}-...\infty }=\dfrac{{{\log }_{e}}a}{{{\log }_{e}}b}={{\log }_{b}}a$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=a-1$ (numerator) and $x=b-1$ (denominator). So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
