
What is the equivalent vector of \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\]?
A. \[a\]
B. \[2a\]
C. \[3a\]
D. 0
Answer
216.6k+ views
Hint: First we will let a vector \[a\]. Then apply the dot product and simplify it.
Formula used:
If \[\overrightarrow A = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow B = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], then the dot product of \[\overrightarrow A \] and \[\overrightarrow B \] is \[{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Complete step by step solution:
Let the vector \[a\] be \[x\widehat i + y\widehat j + z\widehat k\].
We will substitute \[a = x\widehat i + y\widehat j + z\widehat k\] in the given vector \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\].
\[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat i} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat j} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat k} \right)\widehat k\]
\[\begin{array}{l} \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\\ = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {\widehat i + 0 \cdot \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + 0 \cdot \widehat j + \widehat k} \right)} \right)\widehat k\end{array}\]
Now apply the dot product.
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = x\widehat i + y\widehat j + z\widehat k\] ……(i)
We assumed that \[x\widehat i + y\widehat j + z\widehat k = a\].
Now substitute the value of \[x\widehat i + y\widehat j + z\widehat k\] in equation (i).
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = a\]
Hence option A is the correct option.
Note: Many students confused with triple product and \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\]. But \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\] are not triple product. There involves a dot product. So it is not a triple product.
Formula used:
If \[\overrightarrow A = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow B = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], then the dot product of \[\overrightarrow A \] and \[\overrightarrow B \] is \[{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Complete step by step solution:
Let the vector \[a\] be \[x\widehat i + y\widehat j + z\widehat k\].
We will substitute \[a = x\widehat i + y\widehat j + z\widehat k\] in the given vector \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\].
\[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat i} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat j} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat k} \right)\widehat k\]
\[\begin{array}{l} \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\\ = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {\widehat i + 0 \cdot \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + 0 \cdot \widehat j + \widehat k} \right)} \right)\widehat k\end{array}\]
Now apply the dot product.
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = x\widehat i + y\widehat j + z\widehat k\] ……(i)
We assumed that \[x\widehat i + y\widehat j + z\widehat k = a\].
Now substitute the value of \[x\widehat i + y\widehat j + z\widehat k\] in equation (i).
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = a\]
Hence option A is the correct option.
Note: Many students confused with triple product and \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\]. But \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\] are not triple product. There involves a dot product. So it is not a triple product.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

