
What is the equivalent vector of \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\]?
A. \[a\]
B. \[2a\]
C. \[3a\]
D. 0
Answer
232.8k+ views
Hint: First we will let a vector \[a\]. Then apply the dot product and simplify it.
Formula used:
If \[\overrightarrow A = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow B = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], then the dot product of \[\overrightarrow A \] and \[\overrightarrow B \] is \[{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Complete step by step solution:
Let the vector \[a\] be \[x\widehat i + y\widehat j + z\widehat k\].
We will substitute \[a = x\widehat i + y\widehat j + z\widehat k\] in the given vector \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\].
\[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat i} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat j} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat k} \right)\widehat k\]
\[\begin{array}{l} \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\\ = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {\widehat i + 0 \cdot \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + 0 \cdot \widehat j + \widehat k} \right)} \right)\widehat k\end{array}\]
Now apply the dot product.
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = x\widehat i + y\widehat j + z\widehat k\] ……(i)
We assumed that \[x\widehat i + y\widehat j + z\widehat k = a\].
Now substitute the value of \[x\widehat i + y\widehat j + z\widehat k\] in equation (i).
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = a\]
Hence option A is the correct option.
Note: Many students confused with triple product and \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\]. But \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\] are not triple product. There involves a dot product. So it is not a triple product.
Formula used:
If \[\overrightarrow A = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow B = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], then the dot product of \[\overrightarrow A \] and \[\overrightarrow B \] is \[{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Complete step by step solution:
Let the vector \[a\] be \[x\widehat i + y\widehat j + z\widehat k\].
We will substitute \[a = x\widehat i + y\widehat j + z\widehat k\] in the given vector \[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\].
\[\left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat i} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat j} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \widehat k} \right)\widehat k\]
\[\begin{array}{l} \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k\\ = \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {\widehat i + 0 \cdot \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat i + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + \widehat j + 0 \cdot \widehat k} \right)} \right)\widehat j + \left( {\left( {x\widehat i + y\widehat j + z\widehat k} \right) \cdot \left( {0 \cdot \widehat i + 0 \cdot \widehat j + \widehat k} \right)} \right)\widehat k\end{array}\]
Now apply the dot product.
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = x\widehat i + y\widehat j + z\widehat k\] ……(i)
We assumed that \[x\widehat i + y\widehat j + z\widehat k = a\].
Now substitute the value of \[x\widehat i + y\widehat j + z\widehat k\] in equation (i).
\[ \Rightarrow \left( {a \cdot \widehat i} \right)\widehat i + \left( {a \cdot \widehat j} \right)\widehat j + \left( {a \cdot \widehat k} \right)\widehat k = a\]
Hence option A is the correct option.
Note: Many students confused with triple product and \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\]. But \[\left( {a \cdot \widehat i} \right)\widehat i\], \[\left( {a \cdot \widehat j} \right)\widehat j\], and \[\left( {a \cdot \widehat k} \right)\widehat k\] are not triple product. There involves a dot product. So it is not a triple product.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

