
Equal volumes of monoatomic and diatomic gases of the same initial temperature and pressure are mixed. The ratio of the specific heats of the mixture $ \left ( \dfrac{C_p}{C_V} \right )$ will be
A. 1.53
B. 1.52
C. 1.5
D. 1
Answer
222k+ views
Hint: The quantity of heat required to enhance the temperature of the system by \[{\rm{1^\circ C}}\] is called heat capacity. If the mass of the system is one gram then it is called specific heat capacity.
Complete Step by Step Solution:
Specific heat capacity of a gaseous system if determined at constant pressure is denoted by \[{{\rm{C}}_{\rm{p}}}\].
Specific heat capacity of a gaseous system if determined at constant pressure is denoted by \[{{\rm{C}}_{\rm{v}}}\].
We know that for a gaseous system, \[{{\rm{C}}_{\rm{p}}}{\rm{ - }}{{\rm{C}}_{\rm{v}}}{\rm{ = R}}\].
The degree of freedom is the number of independent variable coordinates needed to deduce a molecule in space.
can be expressed in terms of the degree of freedom by the following expression:-
\[{{\rm{C}}_{\rm{v}}}{\rm{ = }}\dfrac{{{\rm{Rf}}}}{{\rm{2}}}\]
where
f=degree of freedom
R=universal gas constant.
\[{{\rm{C}}_{\rm{p}}}{\rm{ - }}{{\rm{C}}_{\rm{v}}}{\rm{ = R}}\]
\[ \Rightarrow {C_p} = R + {C_v}\]
\[ \Rightarrow {{\rm{C}}_{\rm{p}}}{\rm{ = R + }}\dfrac{{{\rm{Rf}}}}{{\rm{2}}}\]
So, \[{{\rm{C}}_{\rm{p}}}{\rm{ = R}}\left( {{\rm{1 + }}\dfrac{{\rm{f}}}{{\rm{2}}}} \right)\]
For monoatomic gases and diatomic gases, the degree of freedom is 3 and 5 respectively.
\[{{\rm{C}}_{\rm{p}}}\] for monoatomic gases=\[{\rm{R}}\left( {{\rm{1 + }}\dfrac{{\rm{3}}}{{\rm{2}}}} \right){\rm{ = }}\dfrac{{\rm{5}}}{{\rm{2}}}{\rm{R}}\]
\[{{\rm{C}}_{\rm{p}}}\] for diatomic gases=\[{\rm{R}}\left( {{\rm{1 + }}\dfrac{{\rm{5}}}{{\rm{2}}}} \right){\rm{ = }}\dfrac{{\rm{7}}}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{p}}}\] for the mixture of these gases is given by the expression:-
\[{{\rm{C}}_{\rm{p}}}{\rm{ = }}\dfrac{{{\rm{12}}}}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{p}}}{\rm{ = 6R}}\]
\[{{\rm{C}}_{\rm{v}}}\] for monoatomic gases=\[\dfrac{{\rm{3}}}{{\rm{2}}}{\rm{R}}\]
\[{{\rm{C}}_{\rm{v}}}\] for diatomic gases=\[\dfrac{5}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{v}}}\] for the mixture of these gases is given by the expression:-
\[{{\rm{C}}_{\rm{v}}}{\rm{ = }}\dfrac{{\rm{8}}}{{\rm{2}}}{\rm{R = 4R}}\]
So, \[{{\rm{C}}_{\rm{v}}}{\rm{ = 4R}}\]
Hence, \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{6R}}{{4R}}\]
\[ \Rightarrow \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{6}{4}\]
\[ \Rightarrow \dfrac{{{C_p}}}{{{C_v}}} = 1.5\]
So, option C is correct.
Note: It must be noted that according to the theory of equipartition of energy, each degree of freedom will hold a contribution of \[\frac{{\rm{1}}}{{\rm{2}}}{\rm{RT}}\] to the molar internal energy. Monoatomic gases have only translational motion which is of three kinds. So, the degree of freedom for these types of gases is 3. Thus, U for a monatomic gas is \[\frac{3}{{\rm{2}}}{\rm{RT}}\].
Complete Step by Step Solution:
Specific heat capacity of a gaseous system if determined at constant pressure is denoted by \[{{\rm{C}}_{\rm{p}}}\].
Specific heat capacity of a gaseous system if determined at constant pressure is denoted by \[{{\rm{C}}_{\rm{v}}}\].
We know that for a gaseous system, \[{{\rm{C}}_{\rm{p}}}{\rm{ - }}{{\rm{C}}_{\rm{v}}}{\rm{ = R}}\].
The degree of freedom is the number of independent variable coordinates needed to deduce a molecule in space.
can be expressed in terms of the degree of freedom by the following expression:-
\[{{\rm{C}}_{\rm{v}}}{\rm{ = }}\dfrac{{{\rm{Rf}}}}{{\rm{2}}}\]
where
f=degree of freedom
R=universal gas constant.
\[{{\rm{C}}_{\rm{p}}}{\rm{ - }}{{\rm{C}}_{\rm{v}}}{\rm{ = R}}\]
\[ \Rightarrow {C_p} = R + {C_v}\]
\[ \Rightarrow {{\rm{C}}_{\rm{p}}}{\rm{ = R + }}\dfrac{{{\rm{Rf}}}}{{\rm{2}}}\]
So, \[{{\rm{C}}_{\rm{p}}}{\rm{ = R}}\left( {{\rm{1 + }}\dfrac{{\rm{f}}}{{\rm{2}}}} \right)\]
For monoatomic gases and diatomic gases, the degree of freedom is 3 and 5 respectively.
\[{{\rm{C}}_{\rm{p}}}\] for monoatomic gases=\[{\rm{R}}\left( {{\rm{1 + }}\dfrac{{\rm{3}}}{{\rm{2}}}} \right){\rm{ = }}\dfrac{{\rm{5}}}{{\rm{2}}}{\rm{R}}\]
\[{{\rm{C}}_{\rm{p}}}\] for diatomic gases=\[{\rm{R}}\left( {{\rm{1 + }}\dfrac{{\rm{5}}}{{\rm{2}}}} \right){\rm{ = }}\dfrac{{\rm{7}}}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{p}}}\] for the mixture of these gases is given by the expression:-
\[{{\rm{C}}_{\rm{p}}}{\rm{ = }}\dfrac{{{\rm{12}}}}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{p}}}{\rm{ = 6R}}\]
\[{{\rm{C}}_{\rm{v}}}\] for monoatomic gases=\[\dfrac{{\rm{3}}}{{\rm{2}}}{\rm{R}}\]
\[{{\rm{C}}_{\rm{v}}}\] for diatomic gases=\[\dfrac{5}{{\rm{2}}}{\rm{R}}\]
So, \[{{\rm{C}}_{\rm{v}}}\] for the mixture of these gases is given by the expression:-
\[{{\rm{C}}_{\rm{v}}}{\rm{ = }}\dfrac{{\rm{8}}}{{\rm{2}}}{\rm{R = 4R}}\]
So, \[{{\rm{C}}_{\rm{v}}}{\rm{ = 4R}}\]
Hence, \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{6R}}{{4R}}\]
\[ \Rightarrow \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{6}{4}\]
\[ \Rightarrow \dfrac{{{C_p}}}{{{C_v}}} = 1.5\]
So, option C is correct.
Note: It must be noted that according to the theory of equipartition of energy, each degree of freedom will hold a contribution of \[\frac{{\rm{1}}}{{\rm{2}}}{\rm{RT}}\] to the molar internal energy. Monoatomic gases have only translational motion which is of three kinds. So, the degree of freedom for these types of gases is 3. Thus, U for a monatomic gas is \[\frac{3}{{\rm{2}}}{\rm{RT}}\].
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

