
What is electrolysis? A solution of ${\rm{CuS}}{{\rm{O}}_{\rm{4}}}$ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?.
Answer
232.8k+ views
Hint: To calculate the mass of copper deposited in the reaction, we have to calculate the charge using the formula $Q = It$. Then, using the cathodic reaction of copper we can calculate the mass of deposited copper in cathode.
Complete step by step answer:
Electrolysis is a process which involves chemical change of electrodes on passing electricity through electrolyte.
Given a solution of copper sulphate ${\rm{CuS}}{{\rm{O}}_{\rm{4}}}$ is electrolysed for 10 minutes with a current of 1.5 ampere. So, time for electrolysis is 10 minutes. We have to convert time from minutes to seconds. So, the conversion is factor is $\dfrac{{60\;{\mathop{\rm s}\nolimits} }}{{1\;\min }}$
Now, multiply 10 minutes with the conversion factor.
$\begin{array}{c}t = 10\;\min \times \dfrac{{60\;{\mathop{\rm s}\nolimits} }}{{1\;\min }}\\ = 600\;{\rm{s}}\end{array}$
Now, we have to calculate the charge for the reaction using the value of current and time. The formula of charge is,
$Q = It$ …… (1)
Where Q is the charge, I is current and t is time. We have to substitute $I = 1.5\,{\rm{A}}$ and $t = 600\;{\rm{s}}$ in the equation (1).
$\begin{array}{c}Q = It\\ = 1.5\;{\rm{A}} \times {\rm{600}}\;{\rm{s}}\\{\rm{ = 900}}\,{\rm{C}}\end{array}$
So, in the reaction $900\;{\rm{C}}$ of charge passed.
Now we write the cathodic reaction of copper.
${\rm{C}}{{\rm{u}}^{2 + }} + 2{e^ - } \to {\rm{Cu}}$
Now, we apply Faraday’s law of electrolysis. From the above reaction, we see that $2 \times 96500\;{\rm{C}}$ is required to deposit 63.5 grams of copper.
So, the amount of copper deposited by 900 Coulomb of charge can be calculated by the unitary method.
$\begin{array}{c}{\rm{Amount}}\;{\rm{of}}\;{\rm{copper\, deposited}} = \dfrac{{63.5\,{\rm{g}}}}{{2 \times 96500\,{\rm{C}}}} \times 900\;{\rm{C}}\\{\rm{ = 0}}{\rm{.296}}\,{\rm{g}}\end{array}$
So, 0.296 gram of copper is deposited at cathode when copper sulphate solution is electrolysed for 10 minutes.
Note: Faraday’s law of electrolysis states that the mass of a substance liberated or deposited in an electrode is directly proportional to the quantity of charge passed. The mathematical representation of this is $w \propto Q$, where w is mass deposited and Q is charge.
Complete step by step answer:
Electrolysis is a process which involves chemical change of electrodes on passing electricity through electrolyte.
Given a solution of copper sulphate ${\rm{CuS}}{{\rm{O}}_{\rm{4}}}$ is electrolysed for 10 minutes with a current of 1.5 ampere. So, time for electrolysis is 10 minutes. We have to convert time from minutes to seconds. So, the conversion is factor is $\dfrac{{60\;{\mathop{\rm s}\nolimits} }}{{1\;\min }}$
Now, multiply 10 minutes with the conversion factor.
$\begin{array}{c}t = 10\;\min \times \dfrac{{60\;{\mathop{\rm s}\nolimits} }}{{1\;\min }}\\ = 600\;{\rm{s}}\end{array}$
Now, we have to calculate the charge for the reaction using the value of current and time. The formula of charge is,
$Q = It$ …… (1)
Where Q is the charge, I is current and t is time. We have to substitute $I = 1.5\,{\rm{A}}$ and $t = 600\;{\rm{s}}$ in the equation (1).
$\begin{array}{c}Q = It\\ = 1.5\;{\rm{A}} \times {\rm{600}}\;{\rm{s}}\\{\rm{ = 900}}\,{\rm{C}}\end{array}$
So, in the reaction $900\;{\rm{C}}$ of charge passed.
Now we write the cathodic reaction of copper.
${\rm{C}}{{\rm{u}}^{2 + }} + 2{e^ - } \to {\rm{Cu}}$
Now, we apply Faraday’s law of electrolysis. From the above reaction, we see that $2 \times 96500\;{\rm{C}}$ is required to deposit 63.5 grams of copper.
So, the amount of copper deposited by 900 Coulomb of charge can be calculated by the unitary method.
$\begin{array}{c}{\rm{Amount}}\;{\rm{of}}\;{\rm{copper\, deposited}} = \dfrac{{63.5\,{\rm{g}}}}{{2 \times 96500\,{\rm{C}}}} \times 900\;{\rm{C}}\\{\rm{ = 0}}{\rm{.296}}\,{\rm{g}}\end{array}$
So, 0.296 gram of copper is deposited at cathode when copper sulphate solution is electrolysed for 10 minutes.
Note: Faraday’s law of electrolysis states that the mass of a substance liberated or deposited in an electrode is directly proportional to the quantity of charge passed. The mathematical representation of this is $w \propto Q$, where w is mass deposited and Q is charge.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

