
How is electrical conductance of a conductor related to the length and area of the cross section of the conductor?
(A) G = l.a.${{\text{k}}^{{{-1}}}}$
(B) G = k.l.${{\text{a}}^{{{-1}}}}$
(C) G = k.a.${{\text{l}}^{{{-1}}}}$
(D) G = k.${{\text{l}}^{{{-1}}}}$.${{\text{a}}^{{{-1}}}}$
Answer
225k+ views
Hint: Conductance is simply the reciprocal of resistance. It is defined as the ratio of current to voltage. It is expressed in siemens or mho.
Complete step by step answer: The resistance of a material is defined as the tendency of a material to stop the flow of current. It is denoted as R and measured in ohm.
We know that
\[{{R = \rho }}{\text{x }}\dfrac{{\text{l}}}{{\text{a}}}\]
where ρ is resistivity and l is the length of the wire in cm and a is the cross section area of wire in ${\text{c}}{{\text{m}}^{\text{2}}}$.
Conductivity is the reciprocal of resistivity(ρ). It is denoted as k.
\[{\text{k = }}\dfrac{{\text{1}}}{{{\rho }}}\]
Conductance is simply the inverse of resistance. It is denoted as G and measured in mho.
\[{\text{G = }}\dfrac{{\text{1}}}{{\text{R}}}\]
\[
\Rightarrow {\text{G = }}\dfrac{{\text{1}}}{{\text{R}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\rho }}{\text{x }}\dfrac{{\text{l}}}{{\text{a}}}}}{\text{ = }}\dfrac{{\text{k}}}{{\dfrac{{\text{l}}}{{\text{a}}}}}{\text{ [}}\because {\text{k = }}\dfrac{{{1}}}{{{\rho }}}{\text{]}} \\
\Rightarrow {\text{G = k}}{\text{.a}}{\text{.}}{{\text{l}}^{{\text{ - 1}}}} \\
\]
So, the correct option is C.
Additional information: The electrical conductance of a conductor depends upon the length and area of the cross section of the conductor and also the conductivity. Conductance is the number which defines how much a material can assist the flow of current. Conductance is the reciprocal of resistance. It is mathematically expressed as ratio of current to voltage from Ohm’s law and it is measured in siemens or mho (i.e. ohm spelled backwards).
Note: Resistivity and conductivity are two different entities that are inversely related. So, the conductance depends upon the conductivity, k and not on the resistivity, ρ. Conductivity represents the amount of current flow thus high conductance means material has high ability to conduct current. In case of resistivity, the value must be low so that it means the material has high ability to readily flow current with less resistance. Thus, both the terms are inversely related to conductance in this way.
Complete step by step answer: The resistance of a material is defined as the tendency of a material to stop the flow of current. It is denoted as R and measured in ohm.
We know that
\[{{R = \rho }}{\text{x }}\dfrac{{\text{l}}}{{\text{a}}}\]
where ρ is resistivity and l is the length of the wire in cm and a is the cross section area of wire in ${\text{c}}{{\text{m}}^{\text{2}}}$.
Conductivity is the reciprocal of resistivity(ρ). It is denoted as k.
\[{\text{k = }}\dfrac{{\text{1}}}{{{\rho }}}\]
Conductance is simply the inverse of resistance. It is denoted as G and measured in mho.
\[{\text{G = }}\dfrac{{\text{1}}}{{\text{R}}}\]
\[
\Rightarrow {\text{G = }}\dfrac{{\text{1}}}{{\text{R}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\rho }}{\text{x }}\dfrac{{\text{l}}}{{\text{a}}}}}{\text{ = }}\dfrac{{\text{k}}}{{\dfrac{{\text{l}}}{{\text{a}}}}}{\text{ [}}\because {\text{k = }}\dfrac{{{1}}}{{{\rho }}}{\text{]}} \\
\Rightarrow {\text{G = k}}{\text{.a}}{\text{.}}{{\text{l}}^{{\text{ - 1}}}} \\
\]
So, the correct option is C.
Additional information: The electrical conductance of a conductor depends upon the length and area of the cross section of the conductor and also the conductivity. Conductance is the number which defines how much a material can assist the flow of current. Conductance is the reciprocal of resistance. It is mathematically expressed as ratio of current to voltage from Ohm’s law and it is measured in siemens or mho (i.e. ohm spelled backwards).
Note: Resistivity and conductivity are two different entities that are inversely related. So, the conductance depends upon the conductivity, k and not on the resistivity, ρ. Conductivity represents the amount of current flow thus high conductance means material has high ability to conduct current. In case of resistivity, the value must be low so that it means the material has high ability to readily flow current with less resistance. Thus, both the terms are inversely related to conductance in this way.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

