
During the sale, colour pencils were being sold in packs of 24 each and crayons in packs of 32 each. If you want full packs of both and same number of pencils and crayons, how many of each would you need to buy?
Answer
224.7k+ views
Hint- In order to find the same number of crayons and pencils, try to solve using L.C.M.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

