Answer
Verified
81k+ views
Hint: Before proceeding with the solution of the given problem, let us discuss the centre of mass in brief. The centre of mass is a position defined relative to an object or system of objects. It is the average position of all the parts of the system, weighted according to their masses. For simple rigid objects with uniform density, the centre of mass is located at the centroid.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main