
Consider a system of two identical particles. One of the particles is at rest and the other has an acceleration a. The centre of mass has an acceleration
A) Zero
B) \[\dfrac{a}{2}\]
C) a
D) 2a
Answer
232.8k+ views
Hint: Before proceeding with the solution of the given problem, let us discuss the centre of mass in brief. The centre of mass is a position defined relative to an object or system of objects. It is the average position of all the parts of the system, weighted according to their masses. For simple rigid objects with uniform density, the centre of mass is located at the centroid.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

