
Consider a set of $3{{n}}$ numbers having variance 4. In this set, the mean of the first $2{{n}}$ numbers are 6 and the mean of the remaining $n$ numbers is 3. A new set is constructed by adding 1 into each of the first 2n numbers and subtracting 1 from each of the remaining $n$ numbers. If the variance of the new set is $k$, then $9{{k}}$ is equal to
Answer
230.7k+ views
Hint: Considering a set of $3{{n}}$ numbers having variance 4. Now determine the value of the mean and the variance and then the obtained value of variance is equated with k to determine the value of 9k.
Formula Used:
The mean is $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}}$
The variance is $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}}$
Complete step by step solution:
Let first 2n observations are ${x_1},{x_2} \ldots \ldots \ldots \ldots ,{x_{2n}}$ and last $n$ observations are ${y_1},{y_2} \ldots \ldots \ldots \ldots ,{y_n}$
Now, $\dfrac{{\sum {{x_i}} }}{{2n}} = 6,\;\;\;\dfrac{{\sum {{y_i}} }}{n} = 3$
Evaluating the values of the summation from above terms, we get
$ \Rightarrow \sum {{x_i}} = 12n,\;\;\sum {{y_i}} = 3n\;\;\;\;\;\therefore \dfrac{{\sum {{x_i}} + \sum {{y_i}} }}{{3n}} = \dfrac{{15n}}{{3n}} = 5$
Now considering a set of $3{{n}}$ numbers having variance 4
${{Now, }}\dfrac{{\sum {x_i^2} + \sum {y_i^2} }}{{3n}} - {5^2} = 4$
Evaluate the above term
$ \Rightarrow \sum {x_i^2} + \sum {y_i^2} = 29 \times 3n$
Simplify the expression, we get
$ \Rightarrow \sum {x_i^2} + \sum {y_i^2} = 87n$
Now, mean is $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}} = \dfrac{{15n + 2n - n}}{{3n}} = \dfrac{{16}}{3}$
Now, variance is $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Expanding the numerator to determine the variance.
Variance $ = \dfrac{{\sum {x_i^2} + \sum {y_i^2} + 2\left( {\sum {{x_i}} - \sum {{y_i}} } \right) + 3n}}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluating the above expression to determine the variance.
Variance $ = \dfrac{{87n + 2(9n) + 3n}}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluating the above expression to determine the variance, we get
Variance $ = 29 + 6 + 1 - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluate the above terms,
Variance$ = [324 - 256]/9$
As the considered value of variance is k. So, equate the value obtained with k, we get
Variance $= \dfrac{68}{9} = k$
Evaluating the value of 9k
9k = 68
Therefore, the correct value of 9k is 68.
Note: The mean $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}}$and the variance $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}}$ should be evaluated by the proposed value and the considered set. Also, such problems can be evaluated by considering values in the set and then evaluating them for satisfying the mean and the variance.
Formula Used:
The mean is $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}}$
The variance is $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}}$
Complete step by step solution:
Let first 2n observations are ${x_1},{x_2} \ldots \ldots \ldots \ldots ,{x_{2n}}$ and last $n$ observations are ${y_1},{y_2} \ldots \ldots \ldots \ldots ,{y_n}$
Now, $\dfrac{{\sum {{x_i}} }}{{2n}} = 6,\;\;\;\dfrac{{\sum {{y_i}} }}{n} = 3$
Evaluating the values of the summation from above terms, we get
$ \Rightarrow \sum {{x_i}} = 12n,\;\;\sum {{y_i}} = 3n\;\;\;\;\;\therefore \dfrac{{\sum {{x_i}} + \sum {{y_i}} }}{{3n}} = \dfrac{{15n}}{{3n}} = 5$
Now considering a set of $3{{n}}$ numbers having variance 4
${{Now, }}\dfrac{{\sum {x_i^2} + \sum {y_i^2} }}{{3n}} - {5^2} = 4$
Evaluate the above term
$ \Rightarrow \sum {x_i^2} + \sum {y_i^2} = 29 \times 3n$
Simplify the expression, we get
$ \Rightarrow \sum {x_i^2} + \sum {y_i^2} = 87n$
Now, mean is $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}} = \dfrac{{15n + 2n - n}}{{3n}} = \dfrac{{16}}{3}$
Now, variance is $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Expanding the numerator to determine the variance.
Variance $ = \dfrac{{\sum {x_i^2} + \sum {y_i^2} + 2\left( {\sum {{x_i}} - \sum {{y_i}} } \right) + 3n}}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluating the above expression to determine the variance.
Variance $ = \dfrac{{87n + 2(9n) + 3n}}{{3n}} - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluating the above expression to determine the variance, we get
Variance $ = 29 + 6 + 1 - {\left( {\dfrac{{16}}{3}} \right)^2}$
Evaluate the above terms,
Variance$ = [324 - 256]/9$
As the considered value of variance is k. So, equate the value obtained with k, we get
Variance $= \dfrac{68}{9} = k$
Evaluating the value of 9k
9k = 68
Therefore, the correct value of 9k is 68.
Note: The mean $\dfrac{{\sum {\left( {{x_i} + 1} \right)} + \sum {\left( {{y_i} - 1} \right)} }}{{3n}}$and the variance $\dfrac{{\sum {{{\left( {{x_i} + 1} \right)}^2}} + \sum {{{\left( {{y_i} - 1} \right)}^2}} }}{{3n}}$ should be evaluated by the proposed value and the considered set. Also, such problems can be evaluated by considering values in the set and then evaluating them for satisfying the mean and the variance.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Consider a set of 3n numbers having variance 4 In this class 12 maths JEE_Main

Find the entire length of the cardioid raleft 1+cos class 12 maths JEE_Main

A bag contains an assortment of blue and red balls class 12 maths JEE_Main

If A B and C are three noncoplanar vectors then left class 12 maths JEE_Main

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

