
Consider a drop of rainwater having mass $1g$ falling from a height of $1km$. It hits the ground with a speed of $50m/s$. Take '$g$' constant with a value $10m/{s^2}$. The work is done by the $\left( i \right)$ gravitational force $\left( {ii} \right)$ the resistive force of airs is:
$\left( a \right)$ $\left( i \right)$ $10J$ $\left( {ii} \right)$ $ - 8.75J$
$\left( b \right)$ $\left( i \right)$ $10J$ $\left( {ii} \right)$ $8.75J$
$\left( c \right)$ $\left( i \right)$ $1.25J$ $\left( {ii} \right)$ $ - 8.75J$
$\left( d \right)$ $\left( i \right)$ $100J$ $\left( {ii} \right)$ $ - 8.75J$
Answer
218.7k+ views
Hint First of all for this question we will calculate the work done by the gravitational force by using the formula $Wg = mgh$ and then we will find out the change in the kinetic energy and when we get these two values, by applying the work-energy theorem we will get the resistive force of the air.
Formula used:
Work done by the gravitational force will be given by
$Wg = mgh$
Here,
$Wg$, will be the work done duo gravitational force
$m$, will be the mass
$g$, will be the acceleration due to gravity
$h$, will be the height
Complete Step By Step Solution
Firstly we will see the values which are given to us.
$m = 1g = \dfrac{1}{{1000kg}}$
$h = 1km = 1000m$
Presently by applying the equation
Work done by the gravitational power will be given by
$Wg = mgh$
Substituting the values, we get
$ \Rightarrow Wg = \dfrac{1}{{1000}} \times 10 \times 1000$
On understanding the above condition, we get
$ \Rightarrow Wg = 10J$
Therefore, the$10J$ work is done by the gravitational force.
Now we will see the change in the kinetic energy
And it will be given by
$\vartriangle K.E = \dfrac{1}{2}m{v^2} - 0$
Now we will substitute the values, we get
$ \Rightarrow \dfrac{1}{2}\dfrac{1}{{1000}} \times 50 \times 50$
Therefore on solving the above equation, we get
$ \Rightarrow 1.25J$
Now by using the work-energy theorem,
We know
Work energy theorem$ = {W_g} + {W_{air}} = \vartriangle K.E$
So now on substituting the values, we get
$ \Rightarrow 10J + res{\text{istance}} = 1.25 - 10$
From here we will calculate the value of resistance,
And it will be equal to
Resistance$ = - 8.75J$
Hence the option $A$ is correct.
Note The work-energy hypothesis expresses that the work done by all powers following up on a molecule approaches the adjustment in the molecule's active energy. The work-energy guideline expresses that the difference in energy of a framework is equivalent to work done on or by the framework. I don't generally know a thorough confirmation however this standard depends on the law of preservation of energy, which is one the key and significant laws that are utilized wherever in material science. Energy when any cooperation, impact, and so on are consistently the same.
Formula used:
Work done by the gravitational force will be given by
$Wg = mgh$
Here,
$Wg$, will be the work done duo gravitational force
$m$, will be the mass
$g$, will be the acceleration due to gravity
$h$, will be the height
Complete Step By Step Solution
Firstly we will see the values which are given to us.
$m = 1g = \dfrac{1}{{1000kg}}$
$h = 1km = 1000m$
Presently by applying the equation
Work done by the gravitational power will be given by
$Wg = mgh$
Substituting the values, we get
$ \Rightarrow Wg = \dfrac{1}{{1000}} \times 10 \times 1000$
On understanding the above condition, we get
$ \Rightarrow Wg = 10J$
Therefore, the$10J$ work is done by the gravitational force.
Now we will see the change in the kinetic energy
And it will be given by
$\vartriangle K.E = \dfrac{1}{2}m{v^2} - 0$
Now we will substitute the values, we get
$ \Rightarrow \dfrac{1}{2}\dfrac{1}{{1000}} \times 50 \times 50$
Therefore on solving the above equation, we get
$ \Rightarrow 1.25J$
Now by using the work-energy theorem,
We know
Work energy theorem$ = {W_g} + {W_{air}} = \vartriangle K.E$
So now on substituting the values, we get
$ \Rightarrow 10J + res{\text{istance}} = 1.25 - 10$
From here we will calculate the value of resistance,
And it will be equal to
Resistance$ = - 8.75J$
Hence the option $A$ is correct.
Note The work-energy hypothesis expresses that the work done by all powers following up on a molecule approaches the adjustment in the molecule's active energy. The work-energy guideline expresses that the difference in energy of a framework is equivalent to work done on or by the framework. I don't generally know a thorough confirmation however this standard depends on the law of preservation of energy, which is one the key and significant laws that are utilized wherever in material science. Energy when any cooperation, impact, and so on are consistently the same.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
Understanding Average and RMS Value in Electrical Circuits

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

