
Consider a compound lab consisting of two different materials that have equal lengths, thickness and thermal conductivities \[K\] and \[2K\] respectively. The equivalent thermal conductivity of the slab is:
(A) \[\sqrt 2 K\]
(B) \[3K\]
(C) \[\dfrac{4}{3}K\]
(D) \[\dfrac{2}{3}K\]
Answer
206.4k+ views
Hint:The equivalent thermal conductivity of the two slabs of different material in series, is obtained by adding them.
It is similar to that of the equivalent resistances connected in series.
Complete step-by-step solution:
We know, in case of resistors, we can find the equivalent resistance if we connect them in series or parallel.
In series connection:
\[{R_{eq}} = {R_1} + {R_2}\]
Where, \[{R_{eq}}\]is the equivalent resistance.
In case of Parallel connection:
\[\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}\]
\[{R_{eq}}\]is again the equivalent resistance.
We know, resistance can be expressed as:
\[R = \dfrac{{\rho L}}{A}\]
Here,
\[R = \]Resistance
\[\rho = \]Resistivity of the material
\[L = \]Length of the conductor
\[A = \]Area of the conductor.
We know that resistivity of the material is nothing but the reciprocal of thermal conductivity.
This means:
\[\rho = \dfrac{1}{K}\]
Putting this value, in the expression above, we get:
\[R = \dfrac{L}{{KA}}\]
Where, \[K\] is the thermal conductivity.
Let us consider, the slabs are connected in series.
They follow the formula as in case of resistances connected in series:
\[\dfrac{{{L_S}}}{{{K_S}{A_S}}} = \dfrac{{{L_1}}}{{{K_1}{A_1}}} + \dfrac{{{L_2}}}{{{K_2}{A_2}}}\]
Here,
\[\dfrac{{{L_S}}}{{{K_S}{A_S}}}\]indicates the equivalent quantities.
We know, in case of equivalent resistance, the length becomes twice that of the initial, and the area of slab remains the same.
Applying this concept:
\[\dfrac{{2{L_{}}}}{{{K_S}A}} = \dfrac{{{L_{}}}}{{{K_1}{A_{}}}} + \dfrac{L}{{{K_2}A}}\]
Since it is given that slabs have the same length, we have considered it to be \[L\].
Now, putting \[{K_1} = K\]and \[{K_2} = 2K\], we obtain
\[\dfrac{{2{L_{}}}}{{{K_S}A}} = \dfrac{{{L_{}}}}{{K{A_{}}}} + \dfrac{L}{{2KA}}\]
Cancelling the equal terms, we get;
\[\dfrac{{{2_{}}}}{{{K_S}}} = \dfrac{{{1_{}}}}{K} + \dfrac{1}{{2K}}\]
On solving the above equation, we obtain:
\[{K_s} = \dfrac{{4K}}{3}\]
This is the required thermal conductivity of the compound slab.
Therefore, option (C) is correct.
Note: Thermal conductivity can be defined as the rate at which heat is transferred by conduction through a cross sectional area of a material. Resistivity is defined as the resistance of a wire having unit length and unit cross sectional area.
It is similar to that of the equivalent resistances connected in series.
Complete step-by-step solution:
We know, in case of resistors, we can find the equivalent resistance if we connect them in series or parallel.
In series connection:
\[{R_{eq}} = {R_1} + {R_2}\]
Where, \[{R_{eq}}\]is the equivalent resistance.
In case of Parallel connection:
\[\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}\]
\[{R_{eq}}\]is again the equivalent resistance.
We know, resistance can be expressed as:
\[R = \dfrac{{\rho L}}{A}\]
Here,
\[R = \]Resistance
\[\rho = \]Resistivity of the material
\[L = \]Length of the conductor
\[A = \]Area of the conductor.
We know that resistivity of the material is nothing but the reciprocal of thermal conductivity.
This means:
\[\rho = \dfrac{1}{K}\]
Putting this value, in the expression above, we get:
\[R = \dfrac{L}{{KA}}\]
Where, \[K\] is the thermal conductivity.
Let us consider, the slabs are connected in series.
They follow the formula as in case of resistances connected in series:
\[\dfrac{{{L_S}}}{{{K_S}{A_S}}} = \dfrac{{{L_1}}}{{{K_1}{A_1}}} + \dfrac{{{L_2}}}{{{K_2}{A_2}}}\]
Here,
\[\dfrac{{{L_S}}}{{{K_S}{A_S}}}\]indicates the equivalent quantities.
We know, in case of equivalent resistance, the length becomes twice that of the initial, and the area of slab remains the same.
Applying this concept:
\[\dfrac{{2{L_{}}}}{{{K_S}A}} = \dfrac{{{L_{}}}}{{{K_1}{A_{}}}} + \dfrac{L}{{{K_2}A}}\]
Since it is given that slabs have the same length, we have considered it to be \[L\].
Now, putting \[{K_1} = K\]and \[{K_2} = 2K\], we obtain
\[\dfrac{{2{L_{}}}}{{{K_S}A}} = \dfrac{{{L_{}}}}{{K{A_{}}}} + \dfrac{L}{{2KA}}\]
Cancelling the equal terms, we get;
\[\dfrac{{{2_{}}}}{{{K_S}}} = \dfrac{{{1_{}}}}{K} + \dfrac{1}{{2K}}\]
On solving the above equation, we obtain:
\[{K_s} = \dfrac{{4K}}{3}\]
This is the required thermal conductivity of the compound slab.
Therefore, option (C) is correct.
Note: Thermal conductivity can be defined as the rate at which heat is transferred by conduction through a cross sectional area of a material. Resistivity is defined as the resistance of a wire having unit length and unit cross sectional area.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor Explained

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

