
Calculate the work done in stretching steel wire of length 2m and of cross-sectional area 0.0225$m{m^2}$, when a load of 100 N is applied slowly to its free end. (Young’s modulus of steel $= \dfrac{{20 \times {{10}^{10}}N}}{{{m^2}}}$)
Answer
219.9k+ views
Hint The Young’s modulus is defined as the essence of the stiffness of a material. In simple words, we can say that how it can be easily bent or stretched. With this concept we have to solve this question.
Complete step by step answer:
It is given,
$L = 2m\;A = 0.0225m{m^2} = 0.0225 \times {10^{ - 6}}{m^3}\;\;F = 100N$
Now we have to find the value of stress as:
$Stress = \dfrac{F}{A} = \dfrac{{100}}{{0.0225 \times {{10}^{ - 6}}}} = 4.4 \times {10^9}\dfrac{N}{{{m^2}}}$
For the energy stored we can write that:
$Energy\;stored\;U = \dfrac{1}{2} \times \dfrac{{{{\left( {stress} \right)}^2}}}{Y} \times AL$
Or
$U = \dfrac{1}{2} \times \dfrac{{\left( {4.4 \times {{10}^9}} \right)}}{{20 \times {{10}^{10}}}} \times \left( {0.0225 \times {{10}^{ - 6}}} \right)\left( 2 \right) = 2.222\;J$
Hence, the answer is $2.222\;J$.
Note To measure the Young’s modulus we know that we need to have an idea about the slope of the elastic stress and the strain graph. It describes the relative stiffness of a material. It is a material property and so it is not the same in all the orientation of the material. In case of the metals and the ceramics that are isotopic the value of the Young’s modulus will always have a constant value since the mechanical properties are the same for them in all forms.
Complete step by step answer:
It is given,
$L = 2m\;A = 0.0225m{m^2} = 0.0225 \times {10^{ - 6}}{m^3}\;\;F = 100N$
Now we have to find the value of stress as:
$Stress = \dfrac{F}{A} = \dfrac{{100}}{{0.0225 \times {{10}^{ - 6}}}} = 4.4 \times {10^9}\dfrac{N}{{{m^2}}}$
For the energy stored we can write that:
$Energy\;stored\;U = \dfrac{1}{2} \times \dfrac{{{{\left( {stress} \right)}^2}}}{Y} \times AL$
Or
$U = \dfrac{1}{2} \times \dfrac{{\left( {4.4 \times {{10}^9}} \right)}}{{20 \times {{10}^{10}}}} \times \left( {0.0225 \times {{10}^{ - 6}}} \right)\left( 2 \right) = 2.222\;J$
Hence, the answer is $2.222\;J$.
Note To measure the Young’s modulus we know that we need to have an idea about the slope of the elastic stress and the strain graph. It describes the relative stiffness of a material. It is a material property and so it is not the same in all the orientation of the material. In case of the metals and the ceramics that are isotopic the value of the Young’s modulus will always have a constant value since the mechanical properties are the same for them in all forms.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

