
Calculate the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
A. 0
B. 1
C. 2
D. \[\pi \]
Answer
162.6k+ views
Hint First we will apply the absolute function in the \[\sin \left| x \right|\]. We know that, \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]. We will apply absolute function for \[\sin \left| x \right|\] in the interval \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
According to absolute function, we will divide the integration into 2 integrations. Then will apply the formula \[\int {\sin x} = - \cos x + C\].
Formula used
Absolute function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]
\[\int {\sin x} = - \cos x + C\]
Complete step by step solution
Given integration is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
We know that \[\sin \left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - \sin x}&{x \in \left[ { - \dfrac{\pi }{2},0} \right)}\\{\sin x}&{x \in \left[ {0,\dfrac{\pi }{2}} \right]}\end{array}} \right.\]
Now we will rewrite the integration as a sum of two integrations.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \int\limits_{ - \dfrac{\pi }{2}}^0 {\sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now apply the formula \[\int {\sin x} = - \cos x + C\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos x} \right]_{ - \dfrac{\pi }{2}}^0 + \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Now we will apply the upper limit and lower limit.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos 0 + \cos \left( { - \dfrac{\pi }{2}} \right)} \right] + \left[ { - \cos \dfrac{\pi }{2} + \cos 0} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - 1 + 0} \right] + \left[ { - 0 + 1} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 1 + 1\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 2\]
Hence option C is correct option.
Note: Students often do not use absolute function to find the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \]. They solved like \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = \left[ {\cos x} \right]_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} = \cos \dfrac{\pi }{2} - \cos \left( { - \dfrac{\pi }{2}} \right) = 0\] which is wrong.
According to absolute function, we will divide the integration into 2 integrations. Then will apply the formula \[\int {\sin x} = - \cos x + C\].
Formula used
Absolute function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]
\[\int {\sin x} = - \cos x + C\]
Complete step by step solution
Given integration is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
We know that \[\sin \left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - \sin x}&{x \in \left[ { - \dfrac{\pi }{2},0} \right)}\\{\sin x}&{x \in \left[ {0,\dfrac{\pi }{2}} \right]}\end{array}} \right.\]
Now we will rewrite the integration as a sum of two integrations.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \int\limits_{ - \dfrac{\pi }{2}}^0 {\sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now apply the formula \[\int {\sin x} = - \cos x + C\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos x} \right]_{ - \dfrac{\pi }{2}}^0 + \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Now we will apply the upper limit and lower limit.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos 0 + \cos \left( { - \dfrac{\pi }{2}} \right)} \right] + \left[ { - \cos \dfrac{\pi }{2} + \cos 0} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - 1 + 0} \right] + \left[ { - 0 + 1} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 1 + 1\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 2\]
Hence option C is correct option.
Note: Students often do not use absolute function to find the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \]. They solved like \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = \left[ {\cos x} \right]_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} = \cos \dfrac{\pi }{2} - \cos \left( { - \dfrac{\pi }{2}} \right) = 0\] which is wrong.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
