
Calculate the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
A. 0
B. 1
C. 2
D. \[\pi \]
Answer
232.8k+ views
Hint First we will apply the absolute function in the \[\sin \left| x \right|\]. We know that, \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]. We will apply absolute function for \[\sin \left| x \right|\] in the interval \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
According to absolute function, we will divide the integration into 2 integrations. Then will apply the formula \[\int {\sin x} = - \cos x + C\].
Formula used
Absolute function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]
\[\int {\sin x} = - \cos x + C\]
Complete step by step solution
Given integration is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
We know that \[\sin \left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - \sin x}&{x \in \left[ { - \dfrac{\pi }{2},0} \right)}\\{\sin x}&{x \in \left[ {0,\dfrac{\pi }{2}} \right]}\end{array}} \right.\]
Now we will rewrite the integration as a sum of two integrations.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \int\limits_{ - \dfrac{\pi }{2}}^0 {\sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now apply the formula \[\int {\sin x} = - \cos x + C\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos x} \right]_{ - \dfrac{\pi }{2}}^0 + \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Now we will apply the upper limit and lower limit.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos 0 + \cos \left( { - \dfrac{\pi }{2}} \right)} \right] + \left[ { - \cos \dfrac{\pi }{2} + \cos 0} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - 1 + 0} \right] + \left[ { - 0 + 1} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 1 + 1\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 2\]
Hence option C is correct option.
Note: Students often do not use absolute function to find the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \]. They solved like \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = \left[ {\cos x} \right]_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} = \cos \dfrac{\pi }{2} - \cos \left( { - \dfrac{\pi }{2}} \right) = 0\] which is wrong.
According to absolute function, we will divide the integration into 2 integrations. Then will apply the formula \[\int {\sin x} = - \cos x + C\].
Formula used
Absolute function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x}&{x < 0}\\x&{x \ge 0}\end{array}} \right.\]
\[\int {\sin x} = - \cos x + C\]
Complete step by step solution
Given integration is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \].
We know that \[\sin \left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - \sin x}&{x \in \left[ { - \dfrac{\pi }{2},0} \right)}\\{\sin x}&{x \in \left[ {0,\dfrac{\pi }{2}} \right]}\end{array}} \right.\]
Now we will rewrite the integration as a sum of two integrations.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \int\limits_{ - \dfrac{\pi }{2}}^0 {\sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now apply the formula \[\int {\sin x} = - \cos x + C\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos x} \right]_{ - \dfrac{\pi }{2}}^0 + \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Now we will apply the upper limit and lower limit.
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - \cos 0 + \cos \left( { - \dfrac{\pi }{2}} \right)} \right] + \left[ { - \cos \dfrac{\pi }{2} + \cos 0} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = - \left[ { - 1 + 0} \right] + \left[ { - 0 + 1} \right]\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 1 + 1\]
\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = 2\]
Hence option C is correct option.
Note: Students often do not use absolute function to find the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} \]. They solved like \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sin \left| x \right|dx} = \left[ {\cos x} \right]_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} = \cos \dfrac{\pi }{2} - \cos \left( { - \dfrac{\pi }{2}} \right) = 0\] which is wrong.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

