Calculate the resistivity of the material of a wire 1 m long , 0.4 mm in diameter and having a resistance 2$\Omega $.
A) $300\Omega m$
B) $2.514 \times {10^{ - 7}}\Omega m$
C) $2 \times {10^7}\Omega m$
D) $1 \times {10^{ - 15}}\Omega m$
Answer
Verified
119.7k+ views
Hint: Resistivity also known as specific electrical resistance is defined as the measure of the resistance of a given size of a particular material to electrical conduction.
Electrical resistivity is the electrical resistance per unit length and per unit of cross-sectional area at a specified temperature and is given by-
$\rho = R\dfrac{A}{l}$ where,
R is the electrical resistance of a uniform specimen of the material measured in ohms
l is the length of the piece of material measured in metres, m
A is the cross-sectional area of the specimen measured in square metres, ${m^2}$
In the given question, we will first find the area of cross-section and then put all the values in formula to find resistivity of the material.
Complete step-by-step answer:
Given, $R = 2\Omega $
$l = 1m$
$d = 0.4mm = 0.0004m$
First, we will find out the area of cross-section of material given by
⇒$A = \dfrac{{\pi {d^2}}}{4}$
⇒$A = \dfrac{{\pi \times {{(0.0004)}^2}}}{4}$
⇒$A = \dfrac{{3.14 \times 0.00000016}}{4}$
⇒$A = 0.0000001256$
⇒$A = 1.256 \times {10^{ - 7}}{m^2}$
Now, we need to find the resistivity of the material.
We know, $\rho = R\dfrac{A}{l}$
Putting in the values in formula, we get
$\rho = \dfrac{{2\Omega \times 1.256 \times {{10}^{ - 7}}{m^2}}}{{1m}}$
⇒$\rho = 2.514 \times {10^{ - 7}}\Omega m$
Hence, the resistivity of the material is $2.514 \times {10^{ - 7}}\Omega m$
Option B is correct.
Note: The resistivity of a material can also be defined in terms of the magnitude of the electric field across it that gives a certain current density. It is possible to devise an electrical resistivity formula which is given by-
$\rho = \dfrac{E}{J}$ where,
ρ is the resistivity of the material.
E is the magnitude of the electric field.
J is the magnitude of the current density.
Electrical resistivity is the electrical resistance per unit length and per unit of cross-sectional area at a specified temperature and is given by-
$\rho = R\dfrac{A}{l}$ where,
R is the electrical resistance of a uniform specimen of the material measured in ohms
l is the length of the piece of material measured in metres, m
A is the cross-sectional area of the specimen measured in square metres, ${m^2}$
In the given question, we will first find the area of cross-section and then put all the values in formula to find resistivity of the material.
Complete step-by-step answer:
Given, $R = 2\Omega $
$l = 1m$
$d = 0.4mm = 0.0004m$
First, we will find out the area of cross-section of material given by
⇒$A = \dfrac{{\pi {d^2}}}{4}$
⇒$A = \dfrac{{\pi \times {{(0.0004)}^2}}}{4}$
⇒$A = \dfrac{{3.14 \times 0.00000016}}{4}$
⇒$A = 0.0000001256$
⇒$A = 1.256 \times {10^{ - 7}}{m^2}$
Now, we need to find the resistivity of the material.
We know, $\rho = R\dfrac{A}{l}$
Putting in the values in formula, we get
$\rho = \dfrac{{2\Omega \times 1.256 \times {{10}^{ - 7}}{m^2}}}{{1m}}$
⇒$\rho = 2.514 \times {10^{ - 7}}\Omega m$
Hence, the resistivity of the material is $2.514 \times {10^{ - 7}}\Omega m$
Option B is correct.
Note: The resistivity of a material can also be defined in terms of the magnitude of the electric field across it that gives a certain current density. It is possible to devise an electrical resistivity formula which is given by-
$\rho = \dfrac{E}{J}$ where,
ρ is the resistivity of the material.
E is the magnitude of the electric field.
J is the magnitude of the current density.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Charging and Discharging of Capacitor
JEE Main Chemistry Exam Pattern 2025
Degree of Dissociation and Its Formula With Solved Example for JEE