
\[\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \cos 2A}}} \right] \times }&{\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]}
\end{array}}& =
\end{array}\]
(1) \[\tan \frac{A}{2}\]
(2) \[\cot \frac{A}{2}\]
(3) \[\sec \frac{A}{2}\]
(4) \[\cos ec\frac{A}{2}\]
Answer
182.1k+ views
Hint:This question is from the chapter, named Trigonometry. Apply the formula of Sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\] and \[\operatorname{Cos} A\]. Use all the basic formulas of trigonometry to simplify the trigonometric expression. After that apply the trigonometric ratios that will help to reduce the expression.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Complete step by step Solution:
There are certain steps involved to solve these kinds of questions. A certain producer should be followed to simplify these kinds of trigonometric expressions.
Our main purpose is to simplify the above expression as much as we can. So, to do that, we will have to use all the basic fundamentals of trigonometry.
Before moving forward, we will use the formula of sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\].
Now, we can write.
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \operatorname{Cos} 2A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\] …………………………(A)
We know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Therefore, from equation (A). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} A\operatorname{Cos} A}}{{1 + 2{{\operatorname{Cos} }^2}A - 1}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A\operatorname{Cos} A}}{{{{\operatorname{Cos} }^2}A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}}} \right]\] ……………………. (B)
To reduce this trigonometric expression, we will again expand \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\]. For this purpose, we will use the expansion formula of \[\operatorname{Sin} A\]and\[\operatorname{Cos} A\].
So, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\operatorname{Sin} A}& = &{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} A}& = &{2{{\operatorname{Cos} }^2}\frac{A}{2}}
\end{array} - 1\]
Therefore, from equation (B). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}}{{1 + 2{{\operatorname{Cos} }^2}\frac{A}{2} - 1}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}} \right]\]
Now, we know that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan \frac{A}{2}}& = &{\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}}
\end{array}\]
Therefore, we can write
\[ \Rightarrow \tan \frac{A}{2}\]
Now, the final answer is \[\tan \frac{A}{2}\]
Hence, the correct option is 1.
Note: Use all the basic trigonometric formulas to reduce the expression. Also, use the half-angle trigonometric formula and apply these formulas until the expressions get simple. After that use trigonometric ratios. All the formulas that you are going to apply, should be in such a manner that there are no errors in the solution.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Complete step by step Solution:
There are certain steps involved to solve these kinds of questions. A certain producer should be followed to simplify these kinds of trigonometric expressions.
Our main purpose is to simplify the above expression as much as we can. So, to do that, we will have to use all the basic fundamentals of trigonometry.
Before moving forward, we will use the formula of sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\].
Now, we can write.
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \operatorname{Cos} 2A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\] …………………………(A)
We know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Therefore, from equation (A). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} A\operatorname{Cos} A}}{{1 + 2{{\operatorname{Cos} }^2}A - 1}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A\operatorname{Cos} A}}{{{{\operatorname{Cos} }^2}A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}}} \right]\] ……………………. (B)
To reduce this trigonometric expression, we will again expand \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\]. For this purpose, we will use the expansion formula of \[\operatorname{Sin} A\]and\[\operatorname{Cos} A\].
So, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\operatorname{Sin} A}& = &{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} A}& = &{2{{\operatorname{Cos} }^2}\frac{A}{2}}
\end{array} - 1\]
Therefore, from equation (B). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}}{{1 + 2{{\operatorname{Cos} }^2}\frac{A}{2} - 1}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}} \right]\]
Now, we know that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan \frac{A}{2}}& = &{\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}}
\end{array}\]
Therefore, we can write
\[ \Rightarrow \tan \frac{A}{2}\]
Now, the final answer is \[\tan \frac{A}{2}\]
Hence, the correct option is 1.
Note: Use all the basic trigonometric formulas to reduce the expression. Also, use the half-angle trigonometric formula and apply these formulas until the expressions get simple. After that use trigonometric ratios. All the formulas that you are going to apply, should be in such a manner that there are no errors in the solution.
Recently Updated Pages
Electric Field Due to a Uniformly Charged Ring: Formula, Derivation & Graph

Differential Equations Chapter For JEE Main Maths

Combined Translational and Rotational Motion – Definition, Examples & Formulas

States of Matter Chapter For JEE Main Chemistry

JEE Main Chemistry Exam Pattern 2026 (Revised) - Vedantu

JEE Main Chemistry Question Paper PDF Download with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Electron Gain Enthalpy and Electron Affinity for JEE

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Maths Chapter 4 Complex Numbers And Quadratic Equations - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 6 Permutations And Combinations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 5 Linear Inequalities - 2025-26

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series - 2025-26

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
