
\[\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \cos 2A}}} \right] \times }&{\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]}
\end{array}}& =
\end{array}\]
(1) \[\tan \frac{A}{2}\]
(2) \[\cot \frac{A}{2}\]
(3) \[\sec \frac{A}{2}\]
(4) \[\cos ec\frac{A}{2}\]
Answer
162k+ views
Hint:This question is from the chapter, named Trigonometry. Apply the formula of Sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\] and \[\operatorname{Cos} A\]. Use all the basic formulas of trigonometry to simplify the trigonometric expression. After that apply the trigonometric ratios that will help to reduce the expression.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Complete step by step Solution:
There are certain steps involved to solve these kinds of questions. A certain producer should be followed to simplify these kinds of trigonometric expressions.
Our main purpose is to simplify the above expression as much as we can. So, to do that, we will have to use all the basic fundamentals of trigonometry.
Before moving forward, we will use the formula of sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\].
Now, we can write.
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \operatorname{Cos} 2A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\] …………………………(A)
We know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Therefore, from equation (A). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} A\operatorname{Cos} A}}{{1 + 2{{\operatorname{Cos} }^2}A - 1}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A\operatorname{Cos} A}}{{{{\operatorname{Cos} }^2}A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}}} \right]\] ……………………. (B)
To reduce this trigonometric expression, we will again expand \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\]. For this purpose, we will use the expansion formula of \[\operatorname{Sin} A\]and\[\operatorname{Cos} A\].
So, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\operatorname{Sin} A}& = &{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} A}& = &{2{{\operatorname{Cos} }^2}\frac{A}{2}}
\end{array} - 1\]
Therefore, from equation (B). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}}{{1 + 2{{\operatorname{Cos} }^2}\frac{A}{2} - 1}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}} \right]\]
Now, we know that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan \frac{A}{2}}& = &{\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}}
\end{array}\]
Therefore, we can write
\[ \Rightarrow \tan \frac{A}{2}\]
Now, the final answer is \[\tan \frac{A}{2}\]
Hence, the correct option is 1.
Note: Use all the basic trigonometric formulas to reduce the expression. Also, use the half-angle trigonometric formula and apply these formulas until the expressions get simple. After that use trigonometric ratios. All the formulas that you are going to apply, should be in such a manner that there are no errors in the solution.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Complete step by step Solution:
There are certain steps involved to solve these kinds of questions. A certain producer should be followed to simplify these kinds of trigonometric expressions.
Our main purpose is to simplify the above expression as much as we can. So, to do that, we will have to use all the basic fundamentals of trigonometry.
Before moving forward, we will use the formula of sin2A and cos2A to reduce the trigonometric expression in terms of \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\].
Now, we can write.
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} 2A}}{{1 + \operatorname{Cos} 2A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\] …………………………(A)
We know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \operatorname{Sin} 2A}& = &{2\operatorname{Sin} A\operatorname{Cos} A}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} 2A}& = &{2{{\operatorname{Cos} }^2}A - 1}
\end{array}\]
Therefore, from equation (A). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} A\operatorname{Cos} A}}{{1 + 2{{\operatorname{Cos} }^2}A - 1}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A\operatorname{Cos} A}}{{{{\operatorname{Cos} }^2}A}}} \right]\]\[\left[ {\frac{{\operatorname{Cos} A}}{{1 + \operatorname{Cos} A}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}}} \right]\] ……………………. (B)
To reduce this trigonometric expression, we will again expand \[\operatorname{Sin} A\]and \[\operatorname{Cos} A\]. For this purpose, we will use the expansion formula of \[\operatorname{Sin} A\]and\[\operatorname{Cos} A\].
So, we know that
\[ \Rightarrow \begin{array}{*{20}{c}}
{\operatorname{Sin} A}& = &{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\operatorname{Cos} A}& = &{2{{\operatorname{Cos} }^2}\frac{A}{2}}
\end{array} - 1\]
Therefore, from equation (B). we can write
\[ \Rightarrow \left[ {\frac{{2\operatorname{Sin} \frac{A}{2}\operatorname{Cos} \frac{A}{2}}}{{1 + 2{{\operatorname{Cos} }^2}\frac{A}{2} - 1}}} \right]\]
\[ \Rightarrow \left[ {\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}} \right]\]
Now, we know that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan \frac{A}{2}}& = &{\frac{{\operatorname{Sin} \frac{A}{2}}}{{\operatorname{Cos} \frac{A}{2}}}}
\end{array}\]
Therefore, we can write
\[ \Rightarrow \tan \frac{A}{2}\]
Now, the final answer is \[\tan \frac{A}{2}\]
Hence, the correct option is 1.
Note: Use all the basic trigonometric formulas to reduce the expression. Also, use the half-angle trigonometric formula and apply these formulas until the expressions get simple. After that use trigonometric ratios. All the formulas that you are going to apply, should be in such a manner that there are no errors in the solution.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
