
At room temperature, copper has free electron density of $8.4 \times {10^{28}}{m^{ - 3}}$. The electron drift velocity in a copper conductor of cross-sectional area of \[{10^{ - 6}}{m^2}\] and carrying a current of 5.4 A, will be:
A) $4m{s^{ - 1}}$
B) $0.4m{s^{ - 1}}$
C) $4cm{s^{ - 1}}$
D) $0.4mm{s^{ - 1}}$
Answer
220.5k+ views
Hint: When some potential difference is applied across some metal, an electric field is created within the metal piece. Due to the presence of this electric field, the free electrons of the metals start moving from lower to higher potential and a current flow is created in the opposite direction. The average uniform velocity of the free electrons is known as the drift velocity of the electron for that metal.
Formula Used:
Dependence of produced current on the cross sectional area, drift velocity and number density of electron is given by:
$i = nAe{v_d}$ (1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$.
${v_d}$ is the drift velocity of an electron.
Complete step by step answer:
Given:
1. Free electron density of copper is $n = 8.4 \times {10^{28}}{m^{ - 3}}$.
2. Cross-sectional area of copper conductor is $A = {10^{ - 6}}{m^2}$.
3. Current through the conductor is i=5.4A.
To find: The drift velocity of the electron, ${v_d}$.
Step 1
First, rewrite the eq.(1) to find an expression of ${v_d}$in terms of other variables:
$
i = nAe{v_d} \\
\therefore {v_d} = \dfrac{i}{{nAe}} \\
$ (2)
Step 2
Now, substitute the values of i, n, A, e in eq.(2) to get the value of ${v_d}$ as:
$
{v_d} = \dfrac{{5.4A}}{{8.4 \times {{10}^{28}}{m^{ - 3}} \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}C}} \\
= 4 \times {10^{ - 4}}m{s^{ - 1}} = 0.4mm{s^{ - 1}} \\
$
So, the magnitude of the drift velocity is $0.4mm{s^{ - 1}}$.
Correct answer:
The electron drift velocity in the copper conductor will be (d) $0.4mm{s^{ - 1}}$.
Note: Many students have misconceptions about the direction of drift velocity of the electrons. Many think that the current direction is the same as the direction of drift velocity. But that’s wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is assumed to be from higher to lower potential. Hence, their directions are completely opposite.
Formula Used:
Dependence of produced current on the cross sectional area, drift velocity and number density of electron is given by:
$i = nAe{v_d}$ (1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$.
${v_d}$ is the drift velocity of an electron.
Complete step by step answer:
Given:
1. Free electron density of copper is $n = 8.4 \times {10^{28}}{m^{ - 3}}$.
2. Cross-sectional area of copper conductor is $A = {10^{ - 6}}{m^2}$.
3. Current through the conductor is i=5.4A.
To find: The drift velocity of the electron, ${v_d}$.
Step 1
First, rewrite the eq.(1) to find an expression of ${v_d}$in terms of other variables:
$
i = nAe{v_d} \\
\therefore {v_d} = \dfrac{i}{{nAe}} \\
$ (2)
Step 2
Now, substitute the values of i, n, A, e in eq.(2) to get the value of ${v_d}$ as:
$
{v_d} = \dfrac{{5.4A}}{{8.4 \times {{10}^{28}}{m^{ - 3}} \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}C}} \\
= 4 \times {10^{ - 4}}m{s^{ - 1}} = 0.4mm{s^{ - 1}} \\
$
So, the magnitude of the drift velocity is $0.4mm{s^{ - 1}}$.
Correct answer:
The electron drift velocity in the copper conductor will be (d) $0.4mm{s^{ - 1}}$.
Note: Many students have misconceptions about the direction of drift velocity of the electrons. Many think that the current direction is the same as the direction of drift velocity. But that’s wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is assumed to be from higher to lower potential. Hence, their directions are completely opposite.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

