
An organ pipe closed at one end has a length of 1 meter and an organ pipe has a length$1.6\,m$. Speed of sound in air is $320\,m/s$. The two pipes can resonate for a sound of frequency
(A)100 Hz
(B) 240 Hz
(C) 320 Hz
(D) 400 Hz
Answer
205.5k+ views
Hint: In this solution, we will calculate the gravitational force exerted by the ring on the sphere. The force exerted by one on the other will have the same magnitude but opposite directions.
Formula used: In this solution, we will use the following formula:
-Resonant frequencies for closed pipe: $f = \dfrac{{nv}}{{4l}}$ where $n$ has odd values
- Resonant frequencies for open pipe: $f = \dfrac{{nv}}{{2l}}$ where $n$ are all positive integers
Complete step by step answer:
In the situation given to us, we want to find a frequency for which both the pipes can resonate. To find such a frequency, let us find the first few frequencies of resonance for both the pipes.
For the closed pipe, the frequencies of resonance can be found from
$f = \dfrac{{nv}}{{4l}}$
Substituting $v = 320\,m/s$ and $l = 1\,m$, we get
$f = n(80)$ where $n$ are odd.
So the first few frequencies are
$f = 80,240,400....$
For the open pipe, the frequencies of resonance will be
$f = \dfrac{{nv}}{{2l}}$ where $n$ are all integers
Substituting $v = 320\,m/s$ and $l = 1.6\,m$, we get
$f = n(100)$
So the first few frequencies are
$f = 100,200,300,400\,Hz$
So we can see that both the open and the closed pipe will resonate at 400 Hz. For the open pipe, the order or resonance will be the fifth harmonic and for the open pipe, it will be the fourth harmonic.
Hence the correct choice is option (D).
Note: While both the pipes resonate for 400 Hz, they can also resonate for higher frequency values but they are not given in the options. Also, the frequency at which both pipes will resonate doesn't need to correspond to the same order of resonance for both the pipes as well.
Formula used: In this solution, we will use the following formula:
-Resonant frequencies for closed pipe: $f = \dfrac{{nv}}{{4l}}$ where $n$ has odd values
- Resonant frequencies for open pipe: $f = \dfrac{{nv}}{{2l}}$ where $n$ are all positive integers
Complete step by step answer:
In the situation given to us, we want to find a frequency for which both the pipes can resonate. To find such a frequency, let us find the first few frequencies of resonance for both the pipes.
For the closed pipe, the frequencies of resonance can be found from
$f = \dfrac{{nv}}{{4l}}$
Substituting $v = 320\,m/s$ and $l = 1\,m$, we get
$f = n(80)$ where $n$ are odd.
So the first few frequencies are
$f = 80,240,400....$
For the open pipe, the frequencies of resonance will be
$f = \dfrac{{nv}}{{2l}}$ where $n$ are all integers
Substituting $v = 320\,m/s$ and $l = 1.6\,m$, we get
$f = n(100)$
So the first few frequencies are
$f = 100,200,300,400\,Hz$
So we can see that both the open and the closed pipe will resonate at 400 Hz. For the open pipe, the order or resonance will be the fifth harmonic and for the open pipe, it will be the fourth harmonic.
Hence the correct choice is option (D).
Note: While both the pipes resonate for 400 Hz, they can also resonate for higher frequency values but they are not given in the options. Also, the frequency at which both pipes will resonate doesn't need to correspond to the same order of resonance for both the pipes as well.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Charging and Discharging of Capacitor Explained

JEE Main 2025 Exam Pattern (Revised)

Photoelectric Effect and Stopping Potential: Concept, Formula & Exam Guide

JEE Main 2026 Session 1 Application Form Opening Soon – Important Dates & Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

