
An heat engine absorbs heat at \[{327^o}C\] and exhausts heat at \[{127^o}C\]. The maximum amount of work performed by the engine in joule per kilo calorie is \[X\]. Find \[\dfrac{X}{5}\].
Answer
223.2k+ views
Hint: For solving this question we have to consider the concepts of heat engine, we have to use temperature in the standard unit of kelvin here. With the help of efficiency formula and work done by heat engine we will determine the value of X. Mainly, one must calculate efficiency and work done using efficiency.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Expected Soon, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Atomic Structure for Beginners

