
An electron, a proton, a deuteron, and an alpha particle, each having speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles is respectively ${{R}_{e,}}{{R}_{p}},{{R}_{d}}$and ${{R}_{\alpha }}$. It follows that
A. ${{R}_{e}}={{R}_{p}}$
B.${{R}_{p}}={{R}_{d}}$
C.${{R}_{d}}={{R}_{\alpha }}$
D.${{R}_{p}}={{R}_{\alpha }}$
Answer
218.1k+ views
Hint: When a charged particle moves with definite velocity and enters a uniform magnetic field $B$, then it experiences a magnetic force perpendicular to the direction of motion and it travels a circular path. Then by equating magnetic force with centripetal force, we can derive the equation of the radius of a circular path.
Formula used:
The radius,$R$ of the circular path in a magnetic field,$B$can be expressed in the following way:
$R=\dfrac{mv}{qB}$
Here $m\And v$are the mass and velocity of the particle with charge $q$.
Complete answer:
When a particle carrying charge$q$, moving with velocity $\vec{v}$enters into a magnetic field $\vec{B}$, it experiences a magnetic force, $\vec{F}=q(\vec{B}\times \vec{v})$

Or,$F=q(Bv\sin {{90}^{o}})$ [Since $\vec{B}$is perpendicular to $\vec{v}$]
Or,$F=qBv$ ……..(i)
As a particle moves in a circular path, then magnetic force becomes a centripetal force $\dfrac{m{{v}^{2}}}{R}$.
Hence by equating magnetic force with centripetal force,
$qBv=\dfrac{m{{v}^{2}}}{R}$
Or,$R=\dfrac{mv}{qB}$
Here we have four charged particles: an electron($e$), a proton ($p$), a deuteron ($d$), and an alpha particle $(\alpha )$. They all have equal speed,$v$and move in a region of the constant magnetic field,$B$.
Therefore the radius of the circular path mainly depends on $\dfrac{mass(m)}{ch\arg e(q)}$ratio.
Or,$R$ $\alpha $ $\dfrac{m}{q}$
Let us check $\dfrac{m}{q}$ratio of each charged particle in the following table,
Let the Mass of a proton be $m$and charge $q$.
As we know the mass of an electron, deuterium and an alpha particle are $\dfrac{1}{1836}$, $2$ and $4$ times the mass of the proton.
Therefore $\dfrac{m}{q}$ ratio for deuterium and an alpha particle are equal, hence their radius of the circular orbit would be equal i.e,${{R}_{d}}={{R}_{\alpha }}$.
Thus, option (C) is correct.
Note:Neutron does not feel any magnetic force while other charged particles experience that force. A neutron is a neutral particle, having no charge. But for charged particle trajectory curvature is proportional to the mass by charge ratio for a definite velocity.
Formula used:
The radius,$R$ of the circular path in a magnetic field,$B$can be expressed in the following way:
$R=\dfrac{mv}{qB}$
Here $m\And v$are the mass and velocity of the particle with charge $q$.
Complete answer:
When a particle carrying charge$q$, moving with velocity $\vec{v}$enters into a magnetic field $\vec{B}$, it experiences a magnetic force, $\vec{F}=q(\vec{B}\times \vec{v})$

Or,$F=q(Bv\sin {{90}^{o}})$ [Since $\vec{B}$is perpendicular to $\vec{v}$]
Or,$F=qBv$ ……..(i)
As a particle moves in a circular path, then magnetic force becomes a centripetal force $\dfrac{m{{v}^{2}}}{R}$.
Hence by equating magnetic force with centripetal force,
$qBv=\dfrac{m{{v}^{2}}}{R}$
Or,$R=\dfrac{mv}{qB}$
Here we have four charged particles: an electron($e$), a proton ($p$), a deuteron ($d$), and an alpha particle $(\alpha )$. They all have equal speed,$v$and move in a region of the constant magnetic field,$B$.
Therefore the radius of the circular path mainly depends on $\dfrac{mass(m)}{ch\arg e(q)}$ratio.
Or,$R$ $\alpha $ $\dfrac{m}{q}$
Let us check $\dfrac{m}{q}$ratio of each charged particle in the following table,
Let the Mass of a proton be $m$and charge $q$.
| Proton | Electron | deuteron | deuteron | |
| Mass($m$) | $m$ | $\dfrac{m}{1836}$ | $2m$ | $4m$ |
| Charge($q$) | $q$ | $q$ | $q$ | $2q$ |
| $\dfrac{mass}{ch\arg e}\left( \dfrac{m}{q} \right)$ | $\dfrac{m}{q}$ | $\dfrac{m}{q\times 1836}$ | $\dfrac{2m}{q}$ | $\dfrac{4m}{2q}=\dfrac{2m}{q}$ |
As we know the mass of an electron, deuterium and an alpha particle are $\dfrac{1}{1836}$, $2$ and $4$ times the mass of the proton.
Therefore $\dfrac{m}{q}$ ratio for deuterium and an alpha particle are equal, hence their radius of the circular orbit would be equal i.e,${{R}_{d}}={{R}_{\alpha }}$.
Thus, option (C) is correct.
Note:Neutron does not feel any magnetic force while other charged particles experience that force. A neutron is a neutral particle, having no charge. But for charged particle trajectory curvature is proportional to the mass by charge ratio for a definite velocity.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

