
An atom of an element ‘X’ is \[1.02\] times heavier than that of an atom of ‘Y’. An atom of ‘Y’ is \[0.1809\] times heavier than that of an atom of oxygen. The atomic mass of ‘X’ is:
A. \[2.952\]
B. \[5.314\]
C. \[4.4\]
D. \[2.6\]
Answer
164.1k+ views
Hint: The atomic mass of an element is the average relative mass of an atom of the element as compared to the mass of \[{}^{{\rm{12}}}{\rm{C}}\]atom taken as \[12\]units.
Complete Step by Step Solution:
A mole is the amount of substance that contains as many particles (atoms, molecules, ions, etc.) as there are atoms exactly in \[{\rm{0}}{\rm{.012}}\,{\rm{kg}}\]\[{\rm{(i}}{\rm{.e}}{\rm{. 12 g)}}\]of carbon \[({}^{{\rm{12}}}{\rm{C)}}\]. It must be remembered that the mass of one mole of an atom is equal to the gram atomic mass of the element, the mass of one mole of a molecule is equal to a gram molecular mass of the substance and the mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
As per the given data,
‘Y’ atom is \[0.1809\]times heavier than that of an atom of an oxygen
Mass of one mole of an atom of oxygen is known to be \[{\rm{16}}\,{\rm{g}}\].
Therefore,
Again, element ‘X’ is \[1.02\]times heavier than that of ‘Y’ atom
So,
Hence, atomic mass of ‘X’ is found to be \[{\rm{2}}{\rm{.952}}\,{\rm{g}}\].
Therefore, option A is correct.
Additional information: Gram atomic mass of ana element is defined as the atomic mass of an element in grams or it is the mass in grams which is numerically equal to the atomic mass of an element. For example, the atomic mass of oxygen is \[{\rm{16}}\,{\rm{amu}}\]. Therefore,
\[{\rm{1}}\,\,{\rm{gram}}\,\,{\rm{atom}}\,\,{\rm{of}}\,\,{\rm{oxygen}}\,\,{\rm{ = }}\,{\rm{gram}}\,\,{\rm{atomic}}\,\,{\rm{mass}}\,\,{\rm{of}}\,\,{\rm{oxygen}}\,\,{\rm{ = }}\,\,{\rm{16}}\,{\rm{g}}\].
Number of gram atoms and the mass in grams of an element are related to each other by the relation:
\[{\rm{Number}}\,\,{\rm{of}}\,\,{\rm{gram}}\,\,{\rm{atoms}}\,\,{\rm{ = }}\,\,\dfrac{{{\rm{mass}}\,\,{\rm{in}}\,\,{\rm{grams}}}}{{{\rm{gram}}\,\,{\rm{atomic}}\,\,{\rm{mass}}}}\]
Note: Mole concept is used to calculate the absolute weight of an atom or a molecule, the number of atoms or molecules present in the given mass of a substance, the mass of a given number of atoms or molecules and size of individual atoms or molecules etc.
Complete Step by Step Solution:
A mole is the amount of substance that contains as many particles (atoms, molecules, ions, etc.) as there are atoms exactly in \[{\rm{0}}{\rm{.012}}\,{\rm{kg}}\]\[{\rm{(i}}{\rm{.e}}{\rm{. 12 g)}}\]of carbon \[({}^{{\rm{12}}}{\rm{C)}}\]. It must be remembered that the mass of one mole of an atom is equal to the gram atomic mass of the element, the mass of one mole of a molecule is equal to a gram molecular mass of the substance and the mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
As per the given data,
‘Y’ atom is \[0.1809\]times heavier than that of an atom of an oxygen
Mass of one mole of an atom of oxygen is known to be \[{\rm{16}}\,{\rm{g}}\].
Therefore,
Again, element ‘X’ is \[1.02\]times heavier than that of ‘Y’ atom
So,
Hence, atomic mass of ‘X’ is found to be \[{\rm{2}}{\rm{.952}}\,{\rm{g}}\].
Therefore, option A is correct.
Additional information: Gram atomic mass of ana element is defined as the atomic mass of an element in grams or it is the mass in grams which is numerically equal to the atomic mass of an element. For example, the atomic mass of oxygen is \[{\rm{16}}\,{\rm{amu}}\]. Therefore,
\[{\rm{1}}\,\,{\rm{gram}}\,\,{\rm{atom}}\,\,{\rm{of}}\,\,{\rm{oxygen}}\,\,{\rm{ = }}\,{\rm{gram}}\,\,{\rm{atomic}}\,\,{\rm{mass}}\,\,{\rm{of}}\,\,{\rm{oxygen}}\,\,{\rm{ = }}\,\,{\rm{16}}\,{\rm{g}}\].
Number of gram atoms and the mass in grams of an element are related to each other by the relation:
\[{\rm{Number}}\,\,{\rm{of}}\,\,{\rm{gram}}\,\,{\rm{atoms}}\,\,{\rm{ = }}\,\,\dfrac{{{\rm{mass}}\,\,{\rm{in}}\,\,{\rm{grams}}}}{{{\rm{gram}}\,\,{\rm{atomic}}\,\,{\rm{mass}}}}\]
Note: Mole concept is used to calculate the absolute weight of an atom or a molecule, the number of atoms or molecules present in the given mass of a substance, the mass of a given number of atoms or molecules and size of individual atoms or molecules etc.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
