
An acyl halide is formed when \[PC{l_5}\] reacts with an:
A. Acid
B. Alcohol
C. Amide
D. Ester
Answer
123.9k+ views
Hint: Let us first understand some basic concepts before we proceed with the solution for this question:
Acyl halides can be explained as the halogen substituted hydroxyl groups in organic compounds. Acyl halides are basically formed when the hydroxy or the -OH group of the hydroxyl or -COOH group gets replaced by a halogen. This is a basic substitution reaction.
Complete Step-by-Step Answer:
In order to solve this question, we must find the products formed by \[PC{l_5}\] with all the given options.
Reaction with acid: the reaction of \[PC{l_5}\] with a given acid would result in the formation of acid chlorides in the products. Acid chloride is the common name for acyl halide where chlorine is the halogen.

Reaction with alcohol: alcohols react in a rather violent manner with \[PC{l_5}\], resulting in the emissive release of hydrochloric acid.
\[R - OH + PC{l_5} \to R - Cl + POC{l_3} + HCl\]
Reaction with amide: when amides are reacted with \[PC{l_5}\], it results in the dehydration of the amide. The corresponding reaction can be given as:
\[R - CON{H_2} + PC{l_5} \to R - C{(Cl)_2}N{H_2} + PC{l_3}\]
Reaction with esters: reaction between esters and \[PC{l_5}\] results in the formation of an alkyl halide, an acyl halide and also phosphorous oxychloride. Hence, only acyl halide cannot be obtained from esters.

Hence, Option A is the correct option.
Note: In the reaction of \[PC{l_5}\] with carboxylic acid, the reaction goes firstly by a cyclic transition state with the removal of HCl. Then via a nucleophilic addition of chloride where the carbonyl is simultaneously protonated.
Acyl halides can be explained as the halogen substituted hydroxyl groups in organic compounds. Acyl halides are basically formed when the hydroxy or the -OH group of the hydroxyl or -COOH group gets replaced by a halogen. This is a basic substitution reaction.
Complete Step-by-Step Answer:
In order to solve this question, we must find the products formed by \[PC{l_5}\] with all the given options.
Reaction with acid: the reaction of \[PC{l_5}\] with a given acid would result in the formation of acid chlorides in the products. Acid chloride is the common name for acyl halide where chlorine is the halogen.

Reaction with alcohol: alcohols react in a rather violent manner with \[PC{l_5}\], resulting in the emissive release of hydrochloric acid.
\[R - OH + PC{l_5} \to R - Cl + POC{l_3} + HCl\]
Reaction with amide: when amides are reacted with \[PC{l_5}\], it results in the dehydration of the amide. The corresponding reaction can be given as:
\[R - CON{H_2} + PC{l_5} \to R - C{(Cl)_2}N{H_2} + PC{l_3}\]
Reaction with esters: reaction between esters and \[PC{l_5}\] results in the formation of an alkyl halide, an acyl halide and also phosphorous oxychloride. Hence, only acyl halide cannot be obtained from esters.

Hence, Option A is the correct option.
Note: In the reaction of \[PC{l_5}\] with carboxylic acid, the reaction goes firstly by a cyclic transition state with the removal of HCl. Then via a nucleophilic addition of chloride where the carbonyl is simultaneously protonated.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Types of Solutions - Solution in Chemistry

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids
