
What is the amplitude of the function \[\sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\]?
A. \[\dfrac{{2\pi }}{5}\]
B. \[\dfrac{\pi }{{15}}\]
C. \[\dfrac{\pi }{{10}}\]
D. \[\dfrac{\pi }{5}\]
Answer
164.4k+ views
Hint: Simplify the given function in the polar form of a complex number, by using the trigonometric identities. Then use the formula of the amplitude of a complex number \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\], to reach the required answer.
Formula Used:
\[\sin2A = 2\sin A \cos A\]
\[2\sin^{2}A = 1 - \cos A\]
The amplitude of a complex number \[z = x + iy\] is: \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Complete step by step solution:
The given function is \[f\left( x \right) = \sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\].
Let’s simplify the above equation.
Apply the trigonometric identities \[2\sin^{2}A = 1 - \cos A\] and \[\sin2A = 2\sin A \cos A\].
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right) + i\left( {2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)} \right)\]
Factor out the common terms.
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\left[ {\cos\left( {\dfrac{\pi }{{10}}} \right) + i\sin\left( {\dfrac{\pi }{{10}}} \right)} \right]\]
The above function is in the polar form of a complex number.
Compare the above function with the polar form \[z = r\left( {\cos\theta + i\sin\theta } \right)\].
We get
\[r = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\], \[x = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)\], and \[y = 2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)\]
Now apply the formula of amplitude \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
\[\theta = \tan^{ - 1}\left( {\dfrac{{2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)}}{{2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\dfrac{{\sin\left( {\dfrac{\pi }{{10}}} \right)}}{{\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\tan\left( {\dfrac{\pi }{{10}}} \right)} \right)\] [Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]]
\[ \Rightarrow \]\[\theta = \dfrac{\pi }{{10}}\] [Since \[\tan^{ - 1}\left( {\tan A} \right) = A\]]
Hence the correct option is C.
Note: The polar representation of a complex number \[z = x + iy\] is \[z = r \left( {\cos \theta + i \sin \theta } \right)\].
Where, \[r\] is the modulus of the complex number and \[r = \sqrt {{x^2} + {y^2}} \].
\[\theta \] is the amplitude or argument of the complex number. It is denoted by \[Arg\left( z \right)\] or \[Amp\left( z \right)\].
Formula Used:
\[\sin2A = 2\sin A \cos A\]
\[2\sin^{2}A = 1 - \cos A\]
The amplitude of a complex number \[z = x + iy\] is: \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Complete step by step solution:
The given function is \[f\left( x \right) = \sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\].
Let’s simplify the above equation.
Apply the trigonometric identities \[2\sin^{2}A = 1 - \cos A\] and \[\sin2A = 2\sin A \cos A\].
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right) + i\left( {2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)} \right)\]
Factor out the common terms.
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\left[ {\cos\left( {\dfrac{\pi }{{10}}} \right) + i\sin\left( {\dfrac{\pi }{{10}}} \right)} \right]\]
The above function is in the polar form of a complex number.
Compare the above function with the polar form \[z = r\left( {\cos\theta + i\sin\theta } \right)\].
We get
\[r = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\], \[x = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)\], and \[y = 2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)\]
Now apply the formula of amplitude \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
\[\theta = \tan^{ - 1}\left( {\dfrac{{2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)}}{{2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\dfrac{{\sin\left( {\dfrac{\pi }{{10}}} \right)}}{{\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\tan\left( {\dfrac{\pi }{{10}}} \right)} \right)\] [Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]]
\[ \Rightarrow \]\[\theta = \dfrac{\pi }{{10}}\] [Since \[\tan^{ - 1}\left( {\tan A} \right) = A\]]
Hence the correct option is C.
Note: The polar representation of a complex number \[z = x + iy\] is \[z = r \left( {\cos \theta + i \sin \theta } \right)\].
Where, \[r\] is the modulus of the complex number and \[r = \sqrt {{x^2} + {y^2}} \].
\[\theta \] is the amplitude or argument of the complex number. It is denoted by \[Arg\left( z \right)\] or \[Amp\left( z \right)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
