
What is the amplitude of the function \[\sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\]?
A. \[\dfrac{{2\pi }}{5}\]
B. \[\dfrac{\pi }{{15}}\]
C. \[\dfrac{\pi }{{10}}\]
D. \[\dfrac{\pi }{5}\]
Answer
232.8k+ views
Hint: Simplify the given function in the polar form of a complex number, by using the trigonometric identities. Then use the formula of the amplitude of a complex number \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\], to reach the required answer.
Formula Used:
\[\sin2A = 2\sin A \cos A\]
\[2\sin^{2}A = 1 - \cos A\]
The amplitude of a complex number \[z = x + iy\] is: \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Complete step by step solution:
The given function is \[f\left( x \right) = \sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\].
Let’s simplify the above equation.
Apply the trigonometric identities \[2\sin^{2}A = 1 - \cos A\] and \[\sin2A = 2\sin A \cos A\].
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right) + i\left( {2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)} \right)\]
Factor out the common terms.
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\left[ {\cos\left( {\dfrac{\pi }{{10}}} \right) + i\sin\left( {\dfrac{\pi }{{10}}} \right)} \right]\]
The above function is in the polar form of a complex number.
Compare the above function with the polar form \[z = r\left( {\cos\theta + i\sin\theta } \right)\].
We get
\[r = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\], \[x = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)\], and \[y = 2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)\]
Now apply the formula of amplitude \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
\[\theta = \tan^{ - 1}\left( {\dfrac{{2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)}}{{2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\dfrac{{\sin\left( {\dfrac{\pi }{{10}}} \right)}}{{\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\tan\left( {\dfrac{\pi }{{10}}} \right)} \right)\] [Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]]
\[ \Rightarrow \]\[\theta = \dfrac{\pi }{{10}}\] [Since \[\tan^{ - 1}\left( {\tan A} \right) = A\]]
Hence the correct option is C.
Note: The polar representation of a complex number \[z = x + iy\] is \[z = r \left( {\cos \theta + i \sin \theta } \right)\].
Where, \[r\] is the modulus of the complex number and \[r = \sqrt {{x^2} + {y^2}} \].
\[\theta \] is the amplitude or argument of the complex number. It is denoted by \[Arg\left( z \right)\] or \[Amp\left( z \right)\].
Formula Used:
\[\sin2A = 2\sin A \cos A\]
\[2\sin^{2}A = 1 - \cos A\]
The amplitude of a complex number \[z = x + iy\] is: \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
Complete step by step solution:
The given function is \[f\left( x \right) = \sin\dfrac{\pi }{5} + i\left( {1 - \cos\dfrac{\pi }{5}} \right)\].
Let’s simplify the above equation.
Apply the trigonometric identities \[2\sin^{2}A = 1 - \cos A\] and \[\sin2A = 2\sin A \cos A\].
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right) + i\left( {2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)} \right)\]
Factor out the common terms.
\[f\left( x \right) = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\left[ {\cos\left( {\dfrac{\pi }{{10}}} \right) + i\sin\left( {\dfrac{\pi }{{10}}} \right)} \right]\]
The above function is in the polar form of a complex number.
Compare the above function with the polar form \[z = r\left( {\cos\theta + i\sin\theta } \right)\].
We get
\[r = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\], \[x = 2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)\], and \[y = 2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)\]
Now apply the formula of amplitude \[\theta = \tan^{ - 1}\left( {\dfrac{y}{x}} \right)\].
\[\theta = \tan^{ - 1}\left( {\dfrac{{2\sin^{2}\left( {\dfrac{\pi }{{10}}} \right)}}{{2\sin\left( {\dfrac{\pi }{{10}}} \right)\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\dfrac{{\sin\left( {\dfrac{\pi }{{10}}} \right)}}{{\cos\left( {\dfrac{\pi }{{10}}} \right)}}} \right)\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {\tan\left( {\dfrac{\pi }{{10}}} \right)} \right)\] [Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]]
\[ \Rightarrow \]\[\theta = \dfrac{\pi }{{10}}\] [Since \[\tan^{ - 1}\left( {\tan A} \right) = A\]]
Hence the correct option is C.
Note: The polar representation of a complex number \[z = x + iy\] is \[z = r \left( {\cos \theta + i \sin \theta } \right)\].
Where, \[r\] is the modulus of the complex number and \[r = \sqrt {{x^2} + {y^2}} \].
\[\theta \] is the amplitude or argument of the complex number. It is denoted by \[Arg\left( z \right)\] or \[Amp\left( z \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

