
Activities of three radioactive substances A, B and C are represented by the curves A, B and C in the figure. Then their half-lives\[{T_{1/2}}(A):{T_{1/2}}(B):{T_{1/2}}(C)\] are in the ratio:

A. 3:2:1
B. 2:1:1
C. 4:3:1
D. 2:1:3
Answer
161.4k+ views
Hint:Radioactive decay defines the process of losing energy by an unstable atomic by radiation. A material that possesses unstable nuclei is a radioactive element. Alpha decay, gamma decay and beta decay are different types of decay.
Formula used:
The relation between decay constant and activity is,
\[\lambda t = \ln \dfrac{{{A_0}}}{{{A_t}}}\]
Where, \[\lambda \] indicates decay constant, \[{A_0}\] is initial activity and \[{A_0}\]is activity at particular time t and t is time.
Complete step by step solution:
In the provided graph, y axis represents time and the x axis represents activity of three substances A, B and C. In the equation,
\[\lambda t = \ln \dfrac{{{A_0}}}{{{A_t}}} \\ \]
\[\Rightarrow \lambda t = \ln {A_0} - \ln {A_t} \\ \]
Rearranging the equation, we get,
\[\ln {A_t} = - \lambda t + \ln {A_0}\]
If we compare the above equation with the equation of straight line, that is, \[y = mx + C\]
Then, \[y = - \ln {A_t}\] and \[m = - \lambda = \tan \theta \\ \]
Taking mod of \[m = - \lambda = \tan \theta \], we get,
\[m = \lambda = \tan \theta \\ \]
Again,
\[\tan \theta = {m_A} = \dfrac{6}{{10}} = \dfrac{3}{5} \\ \]
\[\Rightarrow \tan \theta = {m_B} = \dfrac{6}{5} \\ \]
\[\Rightarrow \tan \theta = {m_C} = \dfrac{2}{5}\]
Therefore,
\[{\lambda _A} = \dfrac{3}{5}\] \[{\lambda _B} = \dfrac{6}{5}\] and \[{\lambda _c} = \dfrac{2}{5}\]
Now, the relation between Half life and \[\lambda \] is,
\[{t_{1/2}} = \dfrac{{\ln 2}}{\lambda }\]
The above equation says that half life is inversely proportional to \[\lambda \] . Therefore, half lives of A, B and C are,
\[{t_{1/2}}(A):{t_{1/2}}(B):{t_{1/2}}(C) = \dfrac{5}{3}:\dfrac{5}{6}:\dfrac{5}{2}\]
Canceling 5 and multiplying 6 in Right Hand side of the equation gives the ratio,
\[{t_{1/2}}(A):{t_{1/2}}(B):{t_{1/2}}(C) = \dfrac{6}{3}:\dfrac{6}{6}:\dfrac{6}{2} = 2:1:3\]
Therefore, the ratio of Half lives of A, B and C is 2:1:3.
Hence, option D is the correct answer.
Note: Half-life defines the requirement of time by a quantity in reducing its quantity into half. This term is used commonly in the study of nuclear physics to understand how unstable atoms quickly undergo radioactive decay.
Formula used:
The relation between decay constant and activity is,
\[\lambda t = \ln \dfrac{{{A_0}}}{{{A_t}}}\]
Where, \[\lambda \] indicates decay constant, \[{A_0}\] is initial activity and \[{A_0}\]is activity at particular time t and t is time.
Complete step by step solution:
In the provided graph, y axis represents time and the x axis represents activity of three substances A, B and C. In the equation,
\[\lambda t = \ln \dfrac{{{A_0}}}{{{A_t}}} \\ \]
\[\Rightarrow \lambda t = \ln {A_0} - \ln {A_t} \\ \]
Rearranging the equation, we get,
\[\ln {A_t} = - \lambda t + \ln {A_0}\]
If we compare the above equation with the equation of straight line, that is, \[y = mx + C\]
Then, \[y = - \ln {A_t}\] and \[m = - \lambda = \tan \theta \\ \]
Taking mod of \[m = - \lambda = \tan \theta \], we get,
\[m = \lambda = \tan \theta \\ \]
Again,
\[\tan \theta = {m_A} = \dfrac{6}{{10}} = \dfrac{3}{5} \\ \]
\[\Rightarrow \tan \theta = {m_B} = \dfrac{6}{5} \\ \]
\[\Rightarrow \tan \theta = {m_C} = \dfrac{2}{5}\]
Therefore,
\[{\lambda _A} = \dfrac{3}{5}\] \[{\lambda _B} = \dfrac{6}{5}\] and \[{\lambda _c} = \dfrac{2}{5}\]
Now, the relation between Half life and \[\lambda \] is,
\[{t_{1/2}} = \dfrac{{\ln 2}}{\lambda }\]
The above equation says that half life is inversely proportional to \[\lambda \] . Therefore, half lives of A, B and C are,
\[{t_{1/2}}(A):{t_{1/2}}(B):{t_{1/2}}(C) = \dfrac{5}{3}:\dfrac{5}{6}:\dfrac{5}{2}\]
Canceling 5 and multiplying 6 in Right Hand side of the equation gives the ratio,
\[{t_{1/2}}(A):{t_{1/2}}(B):{t_{1/2}}(C) = \dfrac{6}{3}:\dfrac{6}{6}:\dfrac{6}{2} = 2:1:3\]
Therefore, the ratio of Half lives of A, B and C is 2:1:3.
Hence, option D is the correct answer.
Note: Half-life defines the requirement of time by a quantity in reducing its quantity into half. This term is used commonly in the study of nuclear physics to understand how unstable atoms quickly undergo radioactive decay.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

List of Fastest Century in IPL History
