
According to de Broglie, which of the following statements is true about the wavelength of a moving particle?
(a) It is never large enough to measure.
(b) It is proportional to the speed of the particle.
(c) It is inversely proportional to the momentum of the particle.
(d) it is equal to Planck’s constant
(e) it does not affect the behaviour of electrons.
Answer
163.2k+ views
Hint: According to the question one must know about the concept of de Broglie wavelength associated with the particle. And then only one can solve this question. When studying quantum mechanics, the de Broglie wavelength is a key idea. De Broglie wavelength is the wavelength () that is connected to an item concerning its momentum and mass. Typically, a particle's force is inversely proportional to its de Broglie wavelength.
Formula used: ${\lambda _{dB}} = \dfrac{h}{p}$
Where h is a Planck’s constant.
p is momentum and
${\lambda _{dB}}$ is de Broglie’s wavelength
Complete Step by Step Solution:
As we know that the de Broglie wavelength concept is associated with the particle i.e., ${\lambda _{dB}} = \dfrac{h}{p}$,
From here we can see that de Broglie’s wavelength is inversely proportional to the momentum and directly proportional to Planck’s constant. This means as the momentum will increase the value of de Broglie wavelength will decrease.
Therefore the correct answer is option (c).
Note: Note that the S.I unit of de Broglie wavelength is meter (m). By analysing the diffraction pattern created as electrons flow through a crystalline substance, we can deduce that matter has a wave-like character. The pattern appears when the electrons' de Broglie wavelength and the distance between their atoms in the crystals are similar.
Formula used: ${\lambda _{dB}} = \dfrac{h}{p}$
Where h is a Planck’s constant.
p is momentum and
${\lambda _{dB}}$ is de Broglie’s wavelength
Complete Step by Step Solution:
As we know that the de Broglie wavelength concept is associated with the particle i.e., ${\lambda _{dB}} = \dfrac{h}{p}$,
From here we can see that de Broglie’s wavelength is inversely proportional to the momentum and directly proportional to Planck’s constant. This means as the momentum will increase the value of de Broglie wavelength will decrease.
Therefore the correct answer is option (c).
Note: Note that the S.I unit of de Broglie wavelength is meter (m). By analysing the diffraction pattern created as electrons flow through a crystalline substance, we can deduce that matter has a wave-like character. The pattern appears when the electrons' de Broglie wavelength and the distance between their atoms in the crystals are similar.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
