
ABC is a triangle in vertical plane. Its two base angles $\angle BAC$ and $\angle BCA$ are $45^{\circ}$ and \[ta{{n}^{-1}}(1/3)\] respectively. A particle is projected from point A such that it passes through vertices $B$ and $C$. Find angle of projection in degrees:

(A) $60^{\circ}$
(B) $53^{\circ}$
(C) $\tan ^{-1}(5 / 4)$
(D) $\tan ^{-1}(5 / 3)$
Answer
204.9k+ views
Hint: We should know that velocity is defined as the rate change of displacement per unit time. Speed in a specific direction is also known as velocity. Velocity is equal to displacement divided by time. Speed, being a scalar quantity, is the rate at which an object covers distance. The average speed is the distance which is a scalar quantity per time ratio. On the other hand, velocity is a vector quantity; it is direction-aware. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion in this case. Based on this we have to solve this question.
Complete step by step answer
We should know that a projectile is an object upon which the only force is gravity. Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity. Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a projectile, and its path is called its trajectory. A projectile is any object that has been thrown, shot, or launched, and ballistics is the study of projectile motion. Examples of projectiles range from a golf ball in flight, to a curve ball thrown by a baseball pitcher to a rocket fired into space.
The diagram for this question is given as:

Equation $y=x \tan \theta\left(1-\dfrac{x}{R}\right)$
at $B x=y$ $\tan \theta=\dfrac{R}{R-Y} \ldots.. (\mathrm{i})$
$\tan 45^{\circ}=\dfrac{Y}{X}$
$x=y \ldots.. (\mathrm{ii})$
$\left(\dfrac{1}{3}\right)=\dfrac{Y}{R-x} \ldots. (iii)$
Solving equation 2 and 3 $R=4y=4x$ it on $(i)$
$\tan \theta=\dfrac{R}{R-\dfrac{R}{4}}$
$\tan \theta=\dfrac{4}{3}$
$\theta=53^{\circ}$
So, option B is correct.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Complete step by step answer
We should know that a projectile is an object upon which the only force is gravity. Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity. Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a projectile, and its path is called its trajectory. A projectile is any object that has been thrown, shot, or launched, and ballistics is the study of projectile motion. Examples of projectiles range from a golf ball in flight, to a curve ball thrown by a baseball pitcher to a rocket fired into space.
The diagram for this question is given as:

Equation $y=x \tan \theta\left(1-\dfrac{x}{R}\right)$
at $B x=y$ $\tan \theta=\dfrac{R}{R-Y} \ldots.. (\mathrm{i})$
$\tan 45^{\circ}=\dfrac{Y}{X}$
$x=y \ldots.. (\mathrm{ii})$
$\left(\dfrac{1}{3}\right)=\dfrac{Y}{R-x} \ldots. (iii)$
Solving equation 2 and 3 $R=4y=4x$ it on $(i)$
$\tan \theta=\dfrac{R}{R-\dfrac{R}{4}}$
$\tan \theta=\dfrac{4}{3}$
$\theta=53^{\circ}$
So, option B is correct.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Recently Updated Pages
JEE Main 2026: Exam Dates OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

Household Electricity Important Concepts and Tips for JEE

JEE Main 2023 (January 31st Shift 1) Physics Question Paper with Answer Key

Clemmensen and Wolff Kishner Reduction - Important Concepts and Tips for JEE

JEE Main Maths Paper Pattern 2026: Marking Scheme & Sections

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Centre of Mass of Hollow and Solid Hemisphere Explained

Charging and Discharging of Capacitor Explained

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Class 11 JEE Main Physics Mock Test 2025

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties Of Fluids - 2025-26

The values of kinetic energy K and potential energy class 11 physics JEE_Main

Why does the sky appear white sometimes class 11 physics JEE_Main

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Halloween 2025: Date, History, Significance, and Traditions

