
A wire of length $50cm$ and cross sectional area of $1sq.mm$ is extended by $1mm$. The required work will be $\left( {Y = 2 \times {{10}^{10}}N{m^2}} \right)$
(A) $6 \times {10^{ - 2}}J$
(B) $4 \times {10^{ - 2}}J$
(C) $2 \times {10^{ - 2}}J$
(D) $1 \times {10^{ - 2}}J$
Answer
220.2k+ views
Hint: First start with finding the force in terms of Young’s modulus, area and length of wire. All these values are already given in the question, put it in the formula of force and after finding force use the formula of work done in terms of force and displaced distance and get the required answer.
Complete answer:
Let start with the given information from the question:
Area, $A = 1m{m^2} = 1 \times {10^{ - 6}}{m^2}$
Length of the wire, $l = 50cm = 0.5m$
Change in length, $\Delta l = 1mm = 1 \times {10^{ - 3}}m$
Young’s modulus, $Y = 2 \times {10^{10}}N/{m^2}$
Now we know force is given by:
$F = \dfrac{{YA\Delta l}}{l}$
Putting all the values in above question, we get;
$F = \dfrac{{2 \times {{10}^{10}} \times {{10}^{ - 6}} \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 1}}}} = 40N$
Now, work done is given by:
$W = F.\Delta x$
$W = 40 \times 1 \times {10^{ - 3}}$
$W = 4 \times {10^{ - 2}}J$
Hence the correct answer is Option(B).
Note: Be careful about all the units of all the variable quantities given in the question, change all the units in meters and then put all the values in the respective formula and finally you will get the required answer. Here all the values were already given in the question. If any of the values were missing then we do not get the answer.
Complete answer:
Let start with the given information from the question:
Area, $A = 1m{m^2} = 1 \times {10^{ - 6}}{m^2}$
Length of the wire, $l = 50cm = 0.5m$
Change in length, $\Delta l = 1mm = 1 \times {10^{ - 3}}m$
Young’s modulus, $Y = 2 \times {10^{10}}N/{m^2}$
Now we know force is given by:
$F = \dfrac{{YA\Delta l}}{l}$
Putting all the values in above question, we get;
$F = \dfrac{{2 \times {{10}^{10}} \times {{10}^{ - 6}} \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 1}}}} = 40N$
Now, work done is given by:
$W = F.\Delta x$
$W = 40 \times 1 \times {10^{ - 3}}$
$W = 4 \times {10^{ - 2}}J$
Hence the correct answer is Option(B).
Note: Be careful about all the units of all the variable quantities given in the question, change all the units in meters and then put all the values in the respective formula and finally you will get the required answer. Here all the values were already given in the question. If any of the values were missing then we do not get the answer.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

