
A uniform field B is acting from south to north and is of magnitude \[1.5\;Wb/{m^2}\]. If a proton having mass of \[1.7 \times {10^{ - 27}}kg\;\] and charge of \[1.6 \times {10^{ - 19}}C\;\] moves in this field vertically downwards with energy \[5 MeV\], then find the force acting on it.
A. \[7.4 \times {10^{12}}N\;\]
B. \[7.4 \times {10^{ - 12}}N\;\]
C. \[7.4 \times {10^{19}}N\;\]
D. \[7.4 \times {10^{ - 19}}N\;\]
Answer
162k+ views
Hint: In the given question, we need to find the force acting on protons. For this, we need to use the formula for force experienced by a charged particle in an external magnetic field to get the desired result.
Formula used:
The following formula is used for solving the given question.
The force acting on a particle is given by
\[F = qB\sqrt {\dfrac{{2K}}{m}} \]
Here, \[F\] is the force, \[q\] is the charge, \[B\] is the magnetic field strength, \[K\] is the kinetic energy and \[m\]is the mass.
Complete answer:
We know that the magnetic force on proton is given by
\[F = qVB\]
Here, \[F\] is the force, \[q\] is the charge, \[B\] is the magnetic field and \[v\] is the velocity.
Also, the kinetic energy is given by
\[K = \dfrac{1}{2}m{v^2}\]
Here, \[K\] is the kinetic energy, \[v\] is the velocity, and \[m\] is the mass.
Thus, we get
\[F = qB\sqrt {\dfrac{{2K}}{m}} \]
\[F = 1.6 \times {10^{ - 19}} \times 1.5 \times \sqrt {\dfrac{{2 \times 5 \times {{10}^6} \times 1.6 \times {{10}^{ - 19}}}}{{1.7 \times {{10}^{ - 27}}kg\;}}} \]
By simplifying, we get
\[F = 7.4 \times {10^{ - 12}}N\;\]
Hence, the force acting on a proton is \[7.4 \times {10^{ - 12}}N\].
Therefore, the correct option is (B).
Note: If the proton and electron are static in the magnetic field or if their velocity, v, and magnetic field, B, are parallel, they will feel zero force. Many students make mistakes in calculation as well as writing the formula of force acting on a proton using kinetic energy. This is the only way through which we can solve the example in the simplest way. Also, it is essential to do calculations carefully to get the correct value of the force.
Formula used:
The following formula is used for solving the given question.
The force acting on a particle is given by
\[F = qB\sqrt {\dfrac{{2K}}{m}} \]
Here, \[F\] is the force, \[q\] is the charge, \[B\] is the magnetic field strength, \[K\] is the kinetic energy and \[m\]is the mass.
Complete answer:
We know that the magnetic force on proton is given by
\[F = qVB\]
Here, \[F\] is the force, \[q\] is the charge, \[B\] is the magnetic field and \[v\] is the velocity.
Also, the kinetic energy is given by
\[K = \dfrac{1}{2}m{v^2}\]
Here, \[K\] is the kinetic energy, \[v\] is the velocity, and \[m\] is the mass.
Thus, we get
\[F = qB\sqrt {\dfrac{{2K}}{m}} \]
\[F = 1.6 \times {10^{ - 19}} \times 1.5 \times \sqrt {\dfrac{{2 \times 5 \times {{10}^6} \times 1.6 \times {{10}^{ - 19}}}}{{1.7 \times {{10}^{ - 27}}kg\;}}} \]
By simplifying, we get
\[F = 7.4 \times {10^{ - 12}}N\;\]
Hence, the force acting on a proton is \[7.4 \times {10^{ - 12}}N\].
Therefore, the correct option is (B).
Note: If the proton and electron are static in the magnetic field or if their velocity, v, and magnetic field, B, are parallel, they will feel zero force. Many students make mistakes in calculation as well as writing the formula of force acting on a proton using kinetic energy. This is the only way through which we can solve the example in the simplest way. Also, it is essential to do calculations carefully to get the correct value of the force.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

List of Fastest Century in IPL History
