
A thin spherical conducting shell of radius of radius R has a charge q. Another charge Q is placed at the center of the shell. The electrostatic potential at a point P which is at a distance $\dfrac{R}{2}$ from the center of the shell is:
A) $\dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} - \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$
B) $\dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} + \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$
C) $\dfrac{{Q + q}}{{4\pi {\varepsilon _o}R}} + \dfrac{2}{R}$
D) $\dfrac{{2Q}}{{4\pi {\varepsilon _o}R}}$
Answer
216.6k+ views
Hint: Here we just have to find the electric potential due to a hollow conducting shell. In the shell the electric potential remains the same i.e. the electric potential is uniform inside and on the shell. We have to find electric potential at point p which lies inside the shell due to charge on the surface of the shell q and the charge inside the shell Q. Hence the total potential will be the summation of the two electric potentials.
Formula Used:
$V = \dfrac{{Kq}}{R}$ ;
Where:
V= Electric Potential;
K= Proportionality Constant,$(K = \dfrac{1}{{4\pi {\varepsilon _o}}})$
q= Charge,
R= Distance.
Complete step by step answer:
Step1: Write the electric potential due to charge q and Q.

Electric potential due to q
$V = \dfrac{{Kq}}{R}$;
Put the value of R as: $R = \dfrac{R}{2}$
$\implies$ $V = \dfrac{{2Kq}}{R}$
Electric potential due to Q
$\implies$ ${V_1} = \dfrac{{KQ}}{R}$
Put the value of R as:$R = \dfrac{R}{2}$
$\implies$ ${V_1} = \dfrac{{2KQ}}{R}$;
Step2:
Combine the two potentials to find out the total electric potential
${V_F} = V + {V_1}$
Put the values,
${V_F} = \dfrac{{2KQ}}{R} + \dfrac{{2Kq}}{R}$ ;
Put the value of K as$(K = \dfrac{1}{{4\pi {\varepsilon _o}}})$, in the above equation we have,
$V = \dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} + \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$
Final Answer: The electrostatic potential at point P due to q and Q is Option B) $V = \dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} + \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$.
Note: Here first find out the electric potential due to q and then electric potential due to Q. The distance between point p and charge q is (R/2) and not (R). Put the formula for electric potential, as it is uniform inside the shell it would be the same on the shell also and find the combined potential.
Formula Used:
$V = \dfrac{{Kq}}{R}$ ;
Where:
V= Electric Potential;
K= Proportionality Constant,$(K = \dfrac{1}{{4\pi {\varepsilon _o}}})$
q= Charge,
R= Distance.
Complete step by step answer:
Step1: Write the electric potential due to charge q and Q.

Electric potential due to q
$V = \dfrac{{Kq}}{R}$;
Put the value of R as: $R = \dfrac{R}{2}$
$\implies$ $V = \dfrac{{2Kq}}{R}$
Electric potential due to Q
$\implies$ ${V_1} = \dfrac{{KQ}}{R}$
Put the value of R as:$R = \dfrac{R}{2}$
$\implies$ ${V_1} = \dfrac{{2KQ}}{R}$;
Step2:
Combine the two potentials to find out the total electric potential
${V_F} = V + {V_1}$
Put the values,
${V_F} = \dfrac{{2KQ}}{R} + \dfrac{{2Kq}}{R}$ ;
Put the value of K as$(K = \dfrac{1}{{4\pi {\varepsilon _o}}})$, in the above equation we have,
$V = \dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} + \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$
Final Answer: The electrostatic potential at point P due to q and Q is Option B) $V = \dfrac{{2Q}}{{4\pi {\varepsilon _o}R}} + \dfrac{{2q}}{{4\pi {\varepsilon _o}R}}$.
Note: Here first find out the electric potential due to q and then electric potential due to Q. The distance between point p and charge q is (R/2) and not (R). Put the formula for electric potential, as it is uniform inside the shell it would be the same on the shell also and find the combined potential.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

