Answer
Verified
96.9k+ views
Hint: To find the solution for the given question, the velocity of stream of water and the area of cross sectional is given. We need to find the force exerted on the wall by the impact of water in which the stream of water hits vertically to the wall.
Complete step by step answer:
When the liquid is at equilibrium, then the force depends on the depth below the surface, the density of the liquid and the acceleration due to gravity.
The given
Velocity $v = 15m{s^{ - 1}}$
The area of cross sectional $A$$ = {10^{ - 2}}{m^2}$
The density of the water $\rho $$ = {10^3}kg{m^{ - 3}}$
The volume of water which hitting the wall per second is,
$ \Rightarrow $ $V = av$
$ \Rightarrow $ $V = 1 \times {10^{ - 2}}{m^2} \times 15m$
$ \Rightarrow $ $V = 15 \times {10^{ - 2}}$${m^3}{s^{ - 1}}$
In order to find the force, first we need to find momentum while impacting which we will need a mass of water impacting the wall.
Mass of the water which is hitting the wall per second is,
$ \Rightarrow $ $m = volume \times density$
$ \Rightarrow $ $m = 15 \times {10^{ - 2}}{m^3}{s^{ - 1}} \times {10^3}kg{m^{ - 3}}$
$ \Rightarrow $ $m = 150$\[kg{s^{ - 1}}\]
\[\]The initial momentum of the water which is hitting on the wall is $p$ $ = m \times V$
$ \Rightarrow $ $ = 150 \times 15$
$ \Rightarrow $ $ = 2250kgm{s^{ - 2}}$
$ \Rightarrow $ $ = 2.25 \times {10^3}$$N$
Hence the force exerted on the wall by the impact of water is $2.25 \times {10^3}$$N$.
Therefore the option (B) is correct.
Note: In mechanics the impact which has high force is applied over a short time period when there are two or more bodies colliding. This force or an acceleration has a greater effect than of a lower applied over a proportional over a longer period. The deformation of the slow down distance is important and key for limiting the force acting on the passenger while in a car crash.
Complete step by step answer:
When the liquid is at equilibrium, then the force depends on the depth below the surface, the density of the liquid and the acceleration due to gravity.
The given
Velocity $v = 15m{s^{ - 1}}$
The area of cross sectional $A$$ = {10^{ - 2}}{m^2}$
The density of the water $\rho $$ = {10^3}kg{m^{ - 3}}$
The volume of water which hitting the wall per second is,
$ \Rightarrow $ $V = av$
$ \Rightarrow $ $V = 1 \times {10^{ - 2}}{m^2} \times 15m$
$ \Rightarrow $ $V = 15 \times {10^{ - 2}}$${m^3}{s^{ - 1}}$
In order to find the force, first we need to find momentum while impacting which we will need a mass of water impacting the wall.
Mass of the water which is hitting the wall per second is,
$ \Rightarrow $ $m = volume \times density$
$ \Rightarrow $ $m = 15 \times {10^{ - 2}}{m^3}{s^{ - 1}} \times {10^3}kg{m^{ - 3}}$
$ \Rightarrow $ $m = 150$\[kg{s^{ - 1}}\]
\[\]The initial momentum of the water which is hitting on the wall is $p$ $ = m \times V$
$ \Rightarrow $ $ = 150 \times 15$
$ \Rightarrow $ $ = 2250kgm{s^{ - 2}}$
$ \Rightarrow $ $ = 2.25 \times {10^3}$$N$
Hence the force exerted on the wall by the impact of water is $2.25 \times {10^3}$$N$.
Therefore the option (B) is correct.
Note: In mechanics the impact which has high force is applied over a short time period when there are two or more bodies colliding. This force or an acceleration has a greater effect than of a lower applied over a proportional over a longer period. The deformation of the slow down distance is important and key for limiting the force acting on the passenger while in a car crash.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main