
A source of e.m.f. \[E = 15\,V\] and having negligible internal resistance is connected to a variable resistance so that the current in the circuit increases with time as \[I = 1.2t + 3\]. Then total charge will flow in first five seconds will be:
A. 10 C
B. 20 C
C. 30 C
D. 40 C
Answer
232.8k+ views
Hint:The electric current is the rate of flow of charge per unit time through a cross-section. So, if the flow of the charge is a function of time, then to find the electric current we find the derivative of the charge function with respect to time.
Formula used:
\[i = \dfrac{{dq}}{{dt}}\]
where i is the electric current and \[\dfrac{{dq}}{{dt}}\] is the rate of flow of charge.
Complete step by step solution:
The source emf is constant and equal to 15 volts. The resistance is changing with time and hence the electric current will also change with time.The electric current is given as the function of time,
\[i = 1.2t + 3\]
Using the formula of electric current,
\[i = \dfrac{{dq}}{{dt}}\]
\[\Rightarrow dq = idt\]
On integrating the expression, we get the charge
\[\int_{{q_{t\left( 2 \right)}}}^{{q_{t\left( 2 \right)}}} {dq} = \int_{{t_1}}^{{t_2}} {idt} \\ \]
\[\Rightarrow Q\left( {{t_2}} \right) - Q\left( {{t_1}} \right) = \int_{{t_1}}^{{t_2}} {idt} \\ \]
\[\Rightarrow Q = \int_{{t_1}}^{{t_2}} {idt} \]
We need to find the charge flow in first five seconds, so the initial time is the time when the measurement started \[{t_1} = 0s\] and the final time is the time within which the total charge needs to be calculated \[{t_2} = 5s\].
On evaluating the integral, we get
\[Q = \int_0^5 {\left( {1.2t + 3} \right)dt} \\ \]
\[\Rightarrow Q = \int_0^5 {\left( {1.2t} \right)dt} + \int_0^5 {\left( 3 \right)dt} \\ \]
\[\Rightarrow Q = 1.2\left[ {\dfrac{{{t^2}}}{2}} \right]_0^5 + 3\left[ t \right]_0^5 \\ \]
On simplifying, we get
\[Q = 1.2\left[ {\dfrac{{{5^2}}}{2} - \dfrac{{{0^2}}}{2}} \right] + 3\left[ {5 - 0} \right] \\ \]
\[\Rightarrow Q = \left( {15 + 15} \right)C \\ \]
\[\therefore Q = 30C\]
Hence, a total 30C charge will flow in the circuit in the first five seconds.
Therefore, the correct option is C.
Note: The electric charge flows continuously through the resistor when a potential difference is applied across it. So, to find the total charge flown we integrate the function of the electric current with respect to time.
Formula used:
\[i = \dfrac{{dq}}{{dt}}\]
where i is the electric current and \[\dfrac{{dq}}{{dt}}\] is the rate of flow of charge.
Complete step by step solution:
The source emf is constant and equal to 15 volts. The resistance is changing with time and hence the electric current will also change with time.The electric current is given as the function of time,
\[i = 1.2t + 3\]
Using the formula of electric current,
\[i = \dfrac{{dq}}{{dt}}\]
\[\Rightarrow dq = idt\]
On integrating the expression, we get the charge
\[\int_{{q_{t\left( 2 \right)}}}^{{q_{t\left( 2 \right)}}} {dq} = \int_{{t_1}}^{{t_2}} {idt} \\ \]
\[\Rightarrow Q\left( {{t_2}} \right) - Q\left( {{t_1}} \right) = \int_{{t_1}}^{{t_2}} {idt} \\ \]
\[\Rightarrow Q = \int_{{t_1}}^{{t_2}} {idt} \]
We need to find the charge flow in first five seconds, so the initial time is the time when the measurement started \[{t_1} = 0s\] and the final time is the time within which the total charge needs to be calculated \[{t_2} = 5s\].
On evaluating the integral, we get
\[Q = \int_0^5 {\left( {1.2t + 3} \right)dt} \\ \]
\[\Rightarrow Q = \int_0^5 {\left( {1.2t} \right)dt} + \int_0^5 {\left( 3 \right)dt} \\ \]
\[\Rightarrow Q = 1.2\left[ {\dfrac{{{t^2}}}{2}} \right]_0^5 + 3\left[ t \right]_0^5 \\ \]
On simplifying, we get
\[Q = 1.2\left[ {\dfrac{{{5^2}}}{2} - \dfrac{{{0^2}}}{2}} \right] + 3\left[ {5 - 0} \right] \\ \]
\[\Rightarrow Q = \left( {15 + 15} \right)C \\ \]
\[\therefore Q = 30C\]
Hence, a total 30C charge will flow in the circuit in the first five seconds.
Therefore, the correct option is C.
Note: The electric charge flows continuously through the resistor when a potential difference is applied across it. So, to find the total charge flown we integrate the function of the electric current with respect to time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

