
A solution contains $25%,25%$and $50%$of ${{H}_{2}}O,{{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$by mass. The mole fraction of${{H}_{2}}O$would be
A.$0.25$
B.$2.5$
C.$0.503$
D.$5.03$
Answer
164.4k+ views
Hint: The mole fraction of any component can be determined by taking the ratio of the number of moles of a component in a solution to the total sum of the mole number of all the components present in that solution. For this first, we will have to calculate the number of moles of each molecule given in the question.
Formula Used:(i)Number of moles,$n=\dfrac{m}{M}$
Here $m\And M$ are the mass of a component and the molar mass of that component.
(ii) ${{X}_{1}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}$ or,${{X}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
${{X}_{1}}\And {{X}_{2}}$denotes the mole fraction of the component $1\And 2$.
${{n}_{1}}\And {{n}_{2}}$ represents the number of moles of the component $1\And 2$.
Complete answer:The given solution contains $25%$ ${{H}_{2}}O$ that means $25g$of ${{H}_{2}}O$is dissolved in $100g$of solution. Similarly, there are $25g$and $50g$of ${{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$present in that solution of mass$100g$ .
The molar mass of ${{H}_{2}}O$, ${{M}_{{{H}_{2}}O}}$$=$($2\times $ Atomic weight of Hydrogen) + ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{H}_{2}}O}}=(2\times 1)+(1\times 16)=18g/mol$
Now the number of moles of ${{H}_{2}}O$,${{n}_{{{H}_{2}}O}}$$=\dfrac{{{m}_{{{H}_{2}}O}}}{{{M}_{{{H}_{2}}O}}}=\dfrac{25g}{18g/mol}=1.4mol$
The molar mass of ${{C}_{2}}{{H}_{5}}OH$,${{M}_{{{C}_{2}}{{H}_{5}}OH}}=$ ($2\times $Atomic weight of carbon)$+$($6\times $Atomic weight of Hydrogen)$+$ ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{C}_{2}}{{H}_{5}}OH}}=(2\times 12)+(6\times 1)+(1\times 16)=46g/mol$
Number of moles in ${{C}_{2}}{{H}_{5}}OH$,${{n}_{{{C}_{2}}{{H}_{5}}OH}}=$${{n}_{{{C}_{2}}{{H}_{5}}OH}}=\dfrac{{{m}_{{{C}_{2}}{{H}_{5}}OH}}}{{{M}_{{{C}_{2}}{{H}_{5}}OH}}}=\dfrac{25g}{46g/mol}=0.54mol$
The molar mass of $C{{H}_{3}}COOH$,${{M}_{C{{H}_{3}}COOH}}=$ ($2\times $Atomic weight of carbon)$+$($4\times $atomic weight of Hydrogen)$+$($2\times $Atomic weight of oxygen)
$\therefore {{M}_{C{{H}_{3}}COOH}}=(2\times 12)+(4\times 1)+(2\times 16)=60g/mol$
Number of moles in $C{{H}_{3}}COOH$,${{n}_{C{{H}_{3}}COOH}}=$ $=\dfrac{{{m}_{C{{H}_{3}}COOH}}}{{{M}_{C{{H}_{3}}COOH}}}=\dfrac{50g}{60g/mol}=0.8mol$
Mole fraction of ${{H}_{2}}O$,${{X}_{{{H}_{2}}O}}=\dfrac{{{n}_{{{H}_{2}}O}}}{{{n}_{{{H}_{2}}O}}+{{n}_{{{C}_{2}}{{H}_{5}}OH}}+{{n}_{C{{H}_{3}}COOH}}}$
Or,${{X}_{{{H}_{2}}O}}=\dfrac{1.4mol}{1.4mol+0.54mol+0.8mol}=0.51$
Therefore mole fraction of ${{H}_{2}}O$ would be 0.51
Thus, option (C) is correct.
Note: Generally mole fraction is a unitless quantity as it only gives the fraction of any component present in a particular solution. Also, it does not change with a temperature change. The temperature affects the volume of any solution but not the mass of any component.
Formula Used:(i)Number of moles,$n=\dfrac{m}{M}$
Here $m\And M$ are the mass of a component and the molar mass of that component.
(ii) ${{X}_{1}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}$ or,${{X}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
${{X}_{1}}\And {{X}_{2}}$denotes the mole fraction of the component $1\And 2$.
${{n}_{1}}\And {{n}_{2}}$ represents the number of moles of the component $1\And 2$.
Complete answer:The given solution contains $25%$ ${{H}_{2}}O$ that means $25g$of ${{H}_{2}}O$is dissolved in $100g$of solution. Similarly, there are $25g$and $50g$of ${{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$present in that solution of mass$100g$ .
The molar mass of ${{H}_{2}}O$, ${{M}_{{{H}_{2}}O}}$$=$($2\times $ Atomic weight of Hydrogen) + ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{H}_{2}}O}}=(2\times 1)+(1\times 16)=18g/mol$
Now the number of moles of ${{H}_{2}}O$,${{n}_{{{H}_{2}}O}}$$=\dfrac{{{m}_{{{H}_{2}}O}}}{{{M}_{{{H}_{2}}O}}}=\dfrac{25g}{18g/mol}=1.4mol$
The molar mass of ${{C}_{2}}{{H}_{5}}OH$,${{M}_{{{C}_{2}}{{H}_{5}}OH}}=$ ($2\times $Atomic weight of carbon)$+$($6\times $Atomic weight of Hydrogen)$+$ ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{C}_{2}}{{H}_{5}}OH}}=(2\times 12)+(6\times 1)+(1\times 16)=46g/mol$
Number of moles in ${{C}_{2}}{{H}_{5}}OH$,${{n}_{{{C}_{2}}{{H}_{5}}OH}}=$${{n}_{{{C}_{2}}{{H}_{5}}OH}}=\dfrac{{{m}_{{{C}_{2}}{{H}_{5}}OH}}}{{{M}_{{{C}_{2}}{{H}_{5}}OH}}}=\dfrac{25g}{46g/mol}=0.54mol$
The molar mass of $C{{H}_{3}}COOH$,${{M}_{C{{H}_{3}}COOH}}=$ ($2\times $Atomic weight of carbon)$+$($4\times $atomic weight of Hydrogen)$+$($2\times $Atomic weight of oxygen)
$\therefore {{M}_{C{{H}_{3}}COOH}}=(2\times 12)+(4\times 1)+(2\times 16)=60g/mol$
Number of moles in $C{{H}_{3}}COOH$,${{n}_{C{{H}_{3}}COOH}}=$ $=\dfrac{{{m}_{C{{H}_{3}}COOH}}}{{{M}_{C{{H}_{3}}COOH}}}=\dfrac{50g}{60g/mol}=0.8mol$
Mole fraction of ${{H}_{2}}O$,${{X}_{{{H}_{2}}O}}=\dfrac{{{n}_{{{H}_{2}}O}}}{{{n}_{{{H}_{2}}O}}+{{n}_{{{C}_{2}}{{H}_{5}}OH}}+{{n}_{C{{H}_{3}}COOH}}}$
Or,${{X}_{{{H}_{2}}O}}=\dfrac{1.4mol}{1.4mol+0.54mol+0.8mol}=0.51$
Therefore mole fraction of ${{H}_{2}}O$ would be 0.51
Thus, option (C) is correct.
Note: Generally mole fraction is a unitless quantity as it only gives the fraction of any component present in a particular solution. Also, it does not change with a temperature change. The temperature affects the volume of any solution but not the mass of any component.
Recently Updated Pages
Sandmeyer Reaction Mechanism: Steps, Diagram & Exam Notes

Environmental Chemistry Chapter for JEE Main Chemistry

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Properties of Isosceles Trapezium: Definition, Features & Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
