
A solution contains $25%,25%$and $50%$of ${{H}_{2}}O,{{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$by mass. The mole fraction of${{H}_{2}}O$would be
A.$0.25$
B.$2.5$
C.$0.503$
D.$5.03$
Answer
233.1k+ views
Hint: The mole fraction of any component can be determined by taking the ratio of the number of moles of a component in a solution to the total sum of the mole number of all the components present in that solution. For this first, we will have to calculate the number of moles of each molecule given in the question.
Formula Used:(i)Number of moles,$n=\dfrac{m}{M}$
Here $m\And M$ are the mass of a component and the molar mass of that component.
(ii) ${{X}_{1}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}$ or,${{X}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
${{X}_{1}}\And {{X}_{2}}$denotes the mole fraction of the component $1\And 2$.
${{n}_{1}}\And {{n}_{2}}$ represents the number of moles of the component $1\And 2$.
Complete answer:The given solution contains $25%$ ${{H}_{2}}O$ that means $25g$of ${{H}_{2}}O$is dissolved in $100g$of solution. Similarly, there are $25g$and $50g$of ${{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$present in that solution of mass$100g$ .
The molar mass of ${{H}_{2}}O$, ${{M}_{{{H}_{2}}O}}$$=$($2\times $ Atomic weight of Hydrogen) + ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{H}_{2}}O}}=(2\times 1)+(1\times 16)=18g/mol$
Now the number of moles of ${{H}_{2}}O$,${{n}_{{{H}_{2}}O}}$$=\dfrac{{{m}_{{{H}_{2}}O}}}{{{M}_{{{H}_{2}}O}}}=\dfrac{25g}{18g/mol}=1.4mol$
The molar mass of ${{C}_{2}}{{H}_{5}}OH$,${{M}_{{{C}_{2}}{{H}_{5}}OH}}=$ ($2\times $Atomic weight of carbon)$+$($6\times $Atomic weight of Hydrogen)$+$ ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{C}_{2}}{{H}_{5}}OH}}=(2\times 12)+(6\times 1)+(1\times 16)=46g/mol$
Number of moles in ${{C}_{2}}{{H}_{5}}OH$,${{n}_{{{C}_{2}}{{H}_{5}}OH}}=$${{n}_{{{C}_{2}}{{H}_{5}}OH}}=\dfrac{{{m}_{{{C}_{2}}{{H}_{5}}OH}}}{{{M}_{{{C}_{2}}{{H}_{5}}OH}}}=\dfrac{25g}{46g/mol}=0.54mol$
The molar mass of $C{{H}_{3}}COOH$,${{M}_{C{{H}_{3}}COOH}}=$ ($2\times $Atomic weight of carbon)$+$($4\times $atomic weight of Hydrogen)$+$($2\times $Atomic weight of oxygen)
$\therefore {{M}_{C{{H}_{3}}COOH}}=(2\times 12)+(4\times 1)+(2\times 16)=60g/mol$
Number of moles in $C{{H}_{3}}COOH$,${{n}_{C{{H}_{3}}COOH}}=$ $=\dfrac{{{m}_{C{{H}_{3}}COOH}}}{{{M}_{C{{H}_{3}}COOH}}}=\dfrac{50g}{60g/mol}=0.8mol$
Mole fraction of ${{H}_{2}}O$,${{X}_{{{H}_{2}}O}}=\dfrac{{{n}_{{{H}_{2}}O}}}{{{n}_{{{H}_{2}}O}}+{{n}_{{{C}_{2}}{{H}_{5}}OH}}+{{n}_{C{{H}_{3}}COOH}}}$
Or,${{X}_{{{H}_{2}}O}}=\dfrac{1.4mol}{1.4mol+0.54mol+0.8mol}=0.51$
Therefore mole fraction of ${{H}_{2}}O$ would be 0.51
Thus, option (C) is correct.
Note: Generally mole fraction is a unitless quantity as it only gives the fraction of any component present in a particular solution. Also, it does not change with a temperature change. The temperature affects the volume of any solution but not the mass of any component.
Formula Used:(i)Number of moles,$n=\dfrac{m}{M}$
Here $m\And M$ are the mass of a component and the molar mass of that component.
(ii) ${{X}_{1}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}$ or,${{X}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
${{X}_{1}}\And {{X}_{2}}$denotes the mole fraction of the component $1\And 2$.
${{n}_{1}}\And {{n}_{2}}$ represents the number of moles of the component $1\And 2$.
Complete answer:The given solution contains $25%$ ${{H}_{2}}O$ that means $25g$of ${{H}_{2}}O$is dissolved in $100g$of solution. Similarly, there are $25g$and $50g$of ${{C}_{2}}{{H}_{5}}OH$and $C{{H}_{3}}COOH$present in that solution of mass$100g$ .
The molar mass of ${{H}_{2}}O$, ${{M}_{{{H}_{2}}O}}$$=$($2\times $ Atomic weight of Hydrogen) + ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{H}_{2}}O}}=(2\times 1)+(1\times 16)=18g/mol$
Now the number of moles of ${{H}_{2}}O$,${{n}_{{{H}_{2}}O}}$$=\dfrac{{{m}_{{{H}_{2}}O}}}{{{M}_{{{H}_{2}}O}}}=\dfrac{25g}{18g/mol}=1.4mol$
The molar mass of ${{C}_{2}}{{H}_{5}}OH$,${{M}_{{{C}_{2}}{{H}_{5}}OH}}=$ ($2\times $Atomic weight of carbon)$+$($6\times $Atomic weight of Hydrogen)$+$ ($1\times $Atomic weight of oxygen)
$\therefore {{M}_{{{C}_{2}}{{H}_{5}}OH}}=(2\times 12)+(6\times 1)+(1\times 16)=46g/mol$
Number of moles in ${{C}_{2}}{{H}_{5}}OH$,${{n}_{{{C}_{2}}{{H}_{5}}OH}}=$${{n}_{{{C}_{2}}{{H}_{5}}OH}}=\dfrac{{{m}_{{{C}_{2}}{{H}_{5}}OH}}}{{{M}_{{{C}_{2}}{{H}_{5}}OH}}}=\dfrac{25g}{46g/mol}=0.54mol$
The molar mass of $C{{H}_{3}}COOH$,${{M}_{C{{H}_{3}}COOH}}=$ ($2\times $Atomic weight of carbon)$+$($4\times $atomic weight of Hydrogen)$+$($2\times $Atomic weight of oxygen)
$\therefore {{M}_{C{{H}_{3}}COOH}}=(2\times 12)+(4\times 1)+(2\times 16)=60g/mol$
Number of moles in $C{{H}_{3}}COOH$,${{n}_{C{{H}_{3}}COOH}}=$ $=\dfrac{{{m}_{C{{H}_{3}}COOH}}}{{{M}_{C{{H}_{3}}COOH}}}=\dfrac{50g}{60g/mol}=0.8mol$
Mole fraction of ${{H}_{2}}O$,${{X}_{{{H}_{2}}O}}=\dfrac{{{n}_{{{H}_{2}}O}}}{{{n}_{{{H}_{2}}O}}+{{n}_{{{C}_{2}}{{H}_{5}}OH}}+{{n}_{C{{H}_{3}}COOH}}}$
Or,${{X}_{{{H}_{2}}O}}=\dfrac{1.4mol}{1.4mol+0.54mol+0.8mol}=0.51$
Therefore mole fraction of ${{H}_{2}}O$ would be 0.51
Thus, option (C) is correct.
Note: Generally mole fraction is a unitless quantity as it only gives the fraction of any component present in a particular solution. Also, it does not change with a temperature change. The temperature affects the volume of any solution but not the mass of any component.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

