Answer
Verified
81k+ views
Hint: We will calculate the focal length of this configuration using a simple formula that relates the focal length of the lens with the distance of the screen with the object and the distance between the two locations of the lens which we’ve all been given.
Formula used: In this solution, we will use the following formula:
$f = \dfrac{{{D^2} - {d^2}}}{{4D}}$ where $f$ is the focal length of the lens in question, $D$ is the distance between the object and the screen, $d$ is the location between the two positions of the lens.
Complete step by step answer:
We have been given the distance between the object and the screen $(D = 90\,cm)$ along with the distance between the two locations of the lenses $(d = 20\,cm)$.
Then using the formula
$f = \dfrac{{{D^2} - {d^2}}}{{4D}}$, we can find the focal length of the lens as
$f = \dfrac{{{{90}^2} - {{20}^2}}}{{4 \times 90}}$
After simplifying the numerator and the denominator, we can write,
$f = \dfrac{{8100 - 400}}{{360}}$
$ \Rightarrow f = \dfrac{{7700}}{{360}} = 21.4\,cm$
Hence the focal length of the lens will be $f = 21.4\,cm$
Note: We should be aware of the formula used to calculate the focal length of such configurations as it is of wide practical use. We should also be aware of the concepts of the focal length of a lens. It is the distance at which parallel rays of light will converge or diverge by a lens. The focal length of the lens is positive since it is convex in nature. In this configuration, multiple images will be formed by the screen since the reflection of the object and its refracted image will both occur. The screen here acts as a plane mirror.
Formula used: In this solution, we will use the following formula:
$f = \dfrac{{{D^2} - {d^2}}}{{4D}}$ where $f$ is the focal length of the lens in question, $D$ is the distance between the object and the screen, $d$ is the location between the two positions of the lens.
Complete step by step answer:
We have been given the distance between the object and the screen $(D = 90\,cm)$ along with the distance between the two locations of the lenses $(d = 20\,cm)$.
Then using the formula
$f = \dfrac{{{D^2} - {d^2}}}{{4D}}$, we can find the focal length of the lens as
$f = \dfrac{{{{90}^2} - {{20}^2}}}{{4 \times 90}}$
After simplifying the numerator and the denominator, we can write,
$f = \dfrac{{8100 - 400}}{{360}}$
$ \Rightarrow f = \dfrac{{7700}}{{360}} = 21.4\,cm$
Hence the focal length of the lens will be $f = 21.4\,cm$
Note: We should be aware of the formula used to calculate the focal length of such configurations as it is of wide practical use. We should also be aware of the concepts of the focal length of a lens. It is the distance at which parallel rays of light will converge or diverge by a lens. The focal length of the lens is positive since it is convex in nature. In this configuration, multiple images will be formed by the screen since the reflection of the object and its refracted image will both occur. The screen here acts as a plane mirror.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main