
A rock band gives rise to an average sound level of $102\,dB$ at a distance of $20\,m$ from the centre of the band. As an approximation, assuming that the band radiates sound equally into a sphere. The sound power output of the band is $8 \times {10^x}\,watts$. Find $x$.
Answer
220.5k+ views
Hint:We can use the relationship connecting the loudness and the ratio of intensities to find the value of intensity of sound. Using that power can be calculated. Since, power is given as the product of intensity and area. Since it is assumed that sound is radiated in the form of a sphere, we can take the area as the area of the sphere. By comparing the final answer with the answer given in the question we can find the value of x.
Complete step by step solution:
It is given that average sound level is $102\,dB$ at $20m$ distance. That is, loudness is given.
We can denote it as L
$L = 102dB$
It is assumed that the band radiates sound equally into a sphere.
We need to find the power output at a distance of $20m$.
We know that the relationship between loudness and intensity is given as
$L = 10\,{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Where, $I$ is the intensity of sound and ${I_0}$ is the reference intensity.
From this we can get the ratio $\dfrac{I}{{{I_0}}}$ as
$\dfrac{I}{{{I_0}}} = {10^{\left( {\dfrac{L}{{10}}} \right)}}$
On substituting the given values we get,
$\dfrac{I}{{{{10}^{ - 12}}}} = {10^{\left( {\dfrac{{102}}{{10}}} \right)}}$
Since the reference frequency ${I_0}$ is not given we can take it as ${10^{ - 12}}$
$ \Rightarrow \dfrac{I}{{{{10}^{ - 12}}}} = {10^{\left( {10.2} \right)}}$
$ \Rightarrow I = {10^{ - 12}} \times {10^{\left( {10.2} \right)}}$
$\therefore I = 1 \cdot 59 \times {10^{ - 2}}W/{m^2}$
Power is given by the product intensity $I$ and area $A$ .
That is
$P = I \times A$
We know the area of the sphere is given as
$A = 4\pi {r^2}$
We need to find power at a distance $20\,m$ from the centre of the band. So, we can consider a sphere of radius $20\,m$ .
$\therefore A = 4\pi \times {\left( {20} \right)^2}$
Thus, power is,
$P = 1 \cdot 59 \times {10^{ - 2}} \times 4 \times 3 \cdot 14 \times {\left( {20} \right)^2}\,W$
$ \Rightarrow P = 80\,W$
$\therefore P = 8 \times {10^1}W$
It was given that the sound power output of the band is $8 \times {10^x}\,W$.
We need to find the value of x,
On comparing this value with the power that we calculated, we can see that the value of x is 1.
Note: The equation that we used connecting the loudness and the intensities is used in the case when the sound level is given in decibel. The logarithm of the ratio of intensity of sound to reference intensity in $W/{m^2}$ gives us the loudness in the bell. To make it in decibel we need to multiply this term by 10.
Complete step by step solution:
It is given that average sound level is $102\,dB$ at $20m$ distance. That is, loudness is given.
We can denote it as L
$L = 102dB$
It is assumed that the band radiates sound equally into a sphere.
We need to find the power output at a distance of $20m$.
We know that the relationship between loudness and intensity is given as
$L = 10\,{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Where, $I$ is the intensity of sound and ${I_0}$ is the reference intensity.
From this we can get the ratio $\dfrac{I}{{{I_0}}}$ as
$\dfrac{I}{{{I_0}}} = {10^{\left( {\dfrac{L}{{10}}} \right)}}$
On substituting the given values we get,
$\dfrac{I}{{{{10}^{ - 12}}}} = {10^{\left( {\dfrac{{102}}{{10}}} \right)}}$
Since the reference frequency ${I_0}$ is not given we can take it as ${10^{ - 12}}$
$ \Rightarrow \dfrac{I}{{{{10}^{ - 12}}}} = {10^{\left( {10.2} \right)}}$
$ \Rightarrow I = {10^{ - 12}} \times {10^{\left( {10.2} \right)}}$
$\therefore I = 1 \cdot 59 \times {10^{ - 2}}W/{m^2}$
Power is given by the product intensity $I$ and area $A$ .
That is
$P = I \times A$
We know the area of the sphere is given as
$A = 4\pi {r^2}$
We need to find power at a distance $20\,m$ from the centre of the band. So, we can consider a sphere of radius $20\,m$ .
$\therefore A = 4\pi \times {\left( {20} \right)^2}$
Thus, power is,
$P = 1 \cdot 59 \times {10^{ - 2}} \times 4 \times 3 \cdot 14 \times {\left( {20} \right)^2}\,W$
$ \Rightarrow P = 80\,W$
$\therefore P = 8 \times {10^1}W$
It was given that the sound power output of the band is $8 \times {10^x}\,W$.
We need to find the value of x,
On comparing this value with the power that we calculated, we can see that the value of x is 1.
Note: The equation that we used connecting the loudness and the intensities is used in the case when the sound level is given in decibel. The logarithm of the ratio of intensity of sound to reference intensity in $W/{m^2}$ gives us the loudness in the bell. To make it in decibel we need to multiply this term by 10.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

