
A raft of mass $600 \mathrm{kg}$ floats in calm water with $7 \mathrm{cm}$ submerged. When a man stands on the raft, $8.4 \mathrm{cm}$ are submerged, the man's mass is :
(A) 30 kg
(B) 60 kg
(C) 90 kg
(D) 120 kg
Answer
144.6k+ views
Hint: We know that a body at rest in a fluid is acted upon by a force pushing upward called the buoyant force, which is equal to the weight of the fluid that the body displaces. If the body is completely submerged, the volume of fluid displaced is equal to the volume of the body. If the body is only partially submerged, the volume of the fluid displaced is equal to the volume of the part of the body that is submerged. Based on this concept we have to answer this question.
Complete step by step answer
It is given that:
Mass or m is 600 kg
Distance of h is 7 cm
The weight of the body is equal to the buoyant force.
This is given as:
$mg=\rho gh$
In the above expression we get that:
m is the mass, $\rho$is the density and h is the height.
Therefore, when we put the values, we get that:
$600\times g=\rho \times g\times 7........(1)$
When a body of mass m is placed on a raft the submerged raft changes 8.4 cm.
Hence, the expression is given as:
$(600+{{m}^{/}})g=\rho \times g\times 8.4........(ii)$
Now we have to divide I by II to get:
$\begin{align}
& \dfrac{600g}{(600+{{m}^{/}})g}=\dfrac{\rho g\times 7}{\rho \times g\times 8.4} \\
& \Rightarrow 5040=4200+7{{m}^{/}} \\
& \Rightarrow m=120kg \\
\end{align}$
So the correct answer is option D.
Note: To answer such a question, it should be known to us that Archimedes' principle is very useful for calculating the volume of an object that does not have a regular shape. The oddly shaped object can be submerged, and the volume of the fluid displaced is equal to the volume of the object. It can also be used in calculating the density or specific gravity of an object.
Let us explain with the help of an example, for an object denser than water, the object can be weighed in air and then weighed when submerged in water. When the object is submerged, it weighs less because of the buoyant force pushing upward. The object's specific gravity is then the object's weight in air divided by how much weight the object loses when placed in water. But most importantly, the principle describes the behaviour of anybody in any fluid, whether it is a ship in water or a balloon in air.
Complete step by step answer
It is given that:
Mass or m is 600 kg
Distance of h is 7 cm
The weight of the body is equal to the buoyant force.
This is given as:
$mg=\rho gh$
In the above expression we get that:
m is the mass, $\rho$is the density and h is the height.
Therefore, when we put the values, we get that:
$600\times g=\rho \times g\times 7........(1)$
When a body of mass m is placed on a raft the submerged raft changes 8.4 cm.
Hence, the expression is given as:
$(600+{{m}^{/}})g=\rho \times g\times 8.4........(ii)$
Now we have to divide I by II to get:
$\begin{align}
& \dfrac{600g}{(600+{{m}^{/}})g}=\dfrac{\rho g\times 7}{\rho \times g\times 8.4} \\
& \Rightarrow 5040=4200+7{{m}^{/}} \\
& \Rightarrow m=120kg \\
\end{align}$
So the correct answer is option D.
Note: To answer such a question, it should be known to us that Archimedes' principle is very useful for calculating the volume of an object that does not have a regular shape. The oddly shaped object can be submerged, and the volume of the fluid displaced is equal to the volume of the object. It can also be used in calculating the density or specific gravity of an object.
Let us explain with the help of an example, for an object denser than water, the object can be weighed in air and then weighed when submerged in water. When the object is submerged, it weighs less because of the buoyant force pushing upward. The object's specific gravity is then the object's weight in air divided by how much weight the object loses when placed in water. But most importantly, the principle describes the behaviour of anybody in any fluid, whether it is a ship in water or a balloon in air.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
