
A radioactive material has a half-life of 10 days. What fraction of the material would remain after 30 days?
A. 0.5
B. 0.25
C. 0.125
D. 0.33
Answer
218.7k+ views
Hint:The radioactive activity of a radioactive substance can be expressed by defining the half-life of the radioactive substance, because the lower the half-life of the radioactive substance the higher the activity of it. The half-life can be explained as the time desired for the radioactive element to decay into one half of its initial amount.
Formula used :
The half-life is given by,
\[{T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda } = \dfrac{{0.6931}}{\lambda }\]
Where, \[\lambda \] - decay or disintegration constant
The law of radioactive decay,
\[N = {N_0}{e^{ - \lambda t}}\]
Where, N = number of atoms at time t
\[{N_0}\] = number of atoms at \[t = 0\]
Complete step by step solution:
Given, \[{T_{{\textstyle{1 \over 2}}}}\] = 10 days
t = 30 days
To find, N = ?
We should rearrange the above two formulae as such,
\[N = {N_0}{e^{ - \dfrac{{\ln 2}}{{{T_{\dfrac{1}{2}}}}}t}} \\ \]
\[\Rightarrow N = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{T_{\dfrac{1}{2}}}}}}}\]
(Since exponent and log are inverse functions, they get cancelled.)
Substituting the known values in the above equation,
\[N = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{{30}}{{10}}}} \\ \]
\[\Rightarrow \dfrac{N}{{{N_0}}} = {\left( {\dfrac{1}{2}} \right)^3} \\ \]
\[\Rightarrow \dfrac{N}{{{N_0}}} = \dfrac{1}{8} \\ \]
\[\therefore \dfrac{N}{{{N_0}}} = 0.125\]
Hence, the correct answer is option C.
Note :This can also be solved using another simple method, by calculating the half-lives of the radioactive substance until the given time period. Given, \[{T_{{\textstyle{1 \over 2}}}}\]= 10 days and the given time period, t = 30 days, which means three half-lives happened.
\[{N_0}\mathop \to \limits^{1{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{2}}\limits_{\left( {0.5{N_0}} \right)} \mathop \to \limits^{2{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{4}}\limits_{\left( {0.25{N_0}} \right)} \mathop \to \limits^{3{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{8}}\limits_{\left( {0.125{N_0}} \right)} \]
Hence, 0.125 % of \[{N_0}\] remains after 30 days.
Formula used :
The half-life is given by,
\[{T_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{\lambda } = \dfrac{{0.6931}}{\lambda }\]
Where, \[\lambda \] - decay or disintegration constant
The law of radioactive decay,
\[N = {N_0}{e^{ - \lambda t}}\]
Where, N = number of atoms at time t
\[{N_0}\] = number of atoms at \[t = 0\]
Complete step by step solution:
Given, \[{T_{{\textstyle{1 \over 2}}}}\] = 10 days
t = 30 days
To find, N = ?
We should rearrange the above two formulae as such,
\[N = {N_0}{e^{ - \dfrac{{\ln 2}}{{{T_{\dfrac{1}{2}}}}}t}} \\ \]
\[\Rightarrow N = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{T_{\dfrac{1}{2}}}}}}}\]
(Since exponent and log are inverse functions, they get cancelled.)
Substituting the known values in the above equation,
\[N = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{{30}}{{10}}}} \\ \]
\[\Rightarrow \dfrac{N}{{{N_0}}} = {\left( {\dfrac{1}{2}} \right)^3} \\ \]
\[\Rightarrow \dfrac{N}{{{N_0}}} = \dfrac{1}{8} \\ \]
\[\therefore \dfrac{N}{{{N_0}}} = 0.125\]
Hence, the correct answer is option C.
Note :This can also be solved using another simple method, by calculating the half-lives of the radioactive substance until the given time period. Given, \[{T_{{\textstyle{1 \over 2}}}}\]= 10 days and the given time period, t = 30 days, which means three half-lives happened.
\[{N_0}\mathop \to \limits^{1{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{2}}\limits_{\left( {0.5{N_0}} \right)} \mathop \to \limits^{2{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{4}}\limits_{\left( {0.25{N_0}} \right)} \mathop \to \limits^{3{T_{\dfrac{1}{2}}}} \mathop {\dfrac{{{N_0}}}{8}}\limits_{\left( {0.125{N_0}} \right)} \]
Hence, 0.125 % of \[{N_0}\] remains after 30 days.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

