
A pot maker rotates a pot making wheel of radius $3m$ by applying a force of $200N$ tangentially. If wheel completes exactly $\dfrac{3}{2}$ revolutions, work done by him is:
A) $5654.86J$
B) $4321.32J$
C) \[4197.5J\]
D) $1884.96J$
Answer
232.8k+ views
Hint: While calculating work done in a rotational motion, we need to consider all the angular equivalents of linear parameters. Maximum angular calculations are done in radians not in degrees.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

