Answer
Verified
78.6k+ views
Hint: While calculating work done in a rotational motion, we need to consider all the angular equivalents of linear parameters. Maximum angular calculations are done in radians not in degrees.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main