
A pot maker rotates a pot making wheel of radius $3m$ by applying a force of $200N$ tangentially. If wheel completes exactly $\dfrac{3}{2}$ revolutions, work done by him is:
A) $5654.86J$
B) $4321.32J$
C) \[4197.5J\]
D) $1884.96J$
Answer
221.7k+ views
Hint: While calculating work done in a rotational motion, we need to consider all the angular equivalents of linear parameters. Maximum angular calculations are done in radians not in degrees.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mass vs Weight: Key Differences Explained for Students

Circuit Switching vs Packet Switching: Key Differences Explained

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

