
A pot maker rotates a pot making wheel of radius $3m$ by applying a force of $200N$ tangentially. If wheel completes exactly $\dfrac{3}{2}$ revolutions, work done by him is:
A) $5654.86J$
B) $4321.32J$
C) \[4197.5J\]
D) $1884.96J$
Answer
207.3k+ views
Hint: While calculating work done in a rotational motion, we need to consider all the angular equivalents of linear parameters. Maximum angular calculations are done in radians not in degrees.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Cutoff Percentile: Rank Vs Percentile

JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Geostationary and Geosynchronous Satellites Explained

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Charging and Discharging of Capacitor Explained

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Guru Nanak Jayanti 2025: Date, History & Celebration of Gurpurab

