A player strikes a football such that it started spinning in the air with an angular velocity $\omega $ as shown in the diagram. Another player of an opposite team punctures the football through a sharp needle in the air such that the radius of the football contract to $75\% $ of its original value. What will be the new angular velocity of the football if the weight of the football remains the same?
(A) $\dfrac{4}{7}\omega $
(B) $\dfrac{{16}}{9}\omega $
(C) $\dfrac{4}{{25}}\omega $
(D) $\dfrac{{25}}{4}\omega $
Answer
Verified
118.2k+ views
Hint: The solution can be determined by equation the torque of the football before puncher with the torque of the football after puncher. The torque is given by the product of the moment of inertia and the angular velocity. By using this equation, the new angular velocity can be determined.
Useful formula
The torque of the football is given by,
$T = I \times \omega $
Where, $T$ is the torque of the ball, $I$ is the moment of inertia and $\omega $ is the angular velocity.
The moment of inertia for spherical ball is,
$I = \dfrac{2}{3}m{R^2}$
Where, $I$ is the moment of inertia, $m$ is the moment of inertia and $R$ is the radius of the sphere.
Complete step by step solution
Given that,
The initial radius is ${R_1}$
The final radius is, ${R_2} = 75\% \times {R_1} \Rightarrow \dfrac{{75}}{{100}}{R_1} \Rightarrow \dfrac{3}{4}{R_1}$
Now,
The torque of the football is given by,
$\Rightarrow T = I \times \omega $
From the above equation, the torque for the football before puncher is given by,
$\Rightarrow T = {I_1} \times {\omega _1}$
The torque for the football after puncher is given by,
$\Rightarrow T = {I_2} \times {\omega _2}$
By equating the two torque equations, then
$\Rightarrow {I_1} \times {\omega _1} = {I_2} \times {\omega _2}$
By substituting the moment of inertia values on both sides, then the above equation is written as,
$\Rightarrow \dfrac{2}{3}m{R_1}^2 \times {\omega _1} = \dfrac{2}{3}m{R_2}^2 \times {\omega _2}$
By cancelling the same terms, then
$\Rightarrow {R_1}^2 \times {\omega _1} = {R_2}^2 \times {\omega _2}$
By keeping the term ${\omega _2}$ in one side, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{{R_2}}}} \right)^2} \times {\omega _1}$
By substituting the value of ${R_2}$, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{\dfrac{3}{4}{R_1}}}} \right)^2} \times {\omega _1}$
By cancelling the same terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{1}{{\dfrac{3}{4}}}} \right)^2} \times {\omega _1}$
By rearranging the terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{4}{3}} \right)^2} \times {\omega _1}$
By squaring the terms, then
$\Rightarrow {\omega _2} = \dfrac{{16}}{9}{\omega _1}$
Hence, the option (B) is the correct answer.
Note: From the final answer, it shows that the angular velocity of the football before puncher is less than the angular velocity of the football after puncher. The angular velocity is increasing that the radius of the object is decreasing. If the radius increases the angular velocity decreases.
Useful formula
The torque of the football is given by,
$T = I \times \omega $
Where, $T$ is the torque of the ball, $I$ is the moment of inertia and $\omega $ is the angular velocity.
The moment of inertia for spherical ball is,
$I = \dfrac{2}{3}m{R^2}$
Where, $I$ is the moment of inertia, $m$ is the moment of inertia and $R$ is the radius of the sphere.
Complete step by step solution
Given that,
The initial radius is ${R_1}$
The final radius is, ${R_2} = 75\% \times {R_1} \Rightarrow \dfrac{{75}}{{100}}{R_1} \Rightarrow \dfrac{3}{4}{R_1}$
Now,
The torque of the football is given by,
$\Rightarrow T = I \times \omega $
From the above equation, the torque for the football before puncher is given by,
$\Rightarrow T = {I_1} \times {\omega _1}$
The torque for the football after puncher is given by,
$\Rightarrow T = {I_2} \times {\omega _2}$
By equating the two torque equations, then
$\Rightarrow {I_1} \times {\omega _1} = {I_2} \times {\omega _2}$
By substituting the moment of inertia values on both sides, then the above equation is written as,
$\Rightarrow \dfrac{2}{3}m{R_1}^2 \times {\omega _1} = \dfrac{2}{3}m{R_2}^2 \times {\omega _2}$
By cancelling the same terms, then
$\Rightarrow {R_1}^2 \times {\omega _1} = {R_2}^2 \times {\omega _2}$
By keeping the term ${\omega _2}$ in one side, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{{R_2}}}} \right)^2} \times {\omega _1}$
By substituting the value of ${R_2}$, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{\dfrac{3}{4}{R_1}}}} \right)^2} \times {\omega _1}$
By cancelling the same terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{1}{{\dfrac{3}{4}}}} \right)^2} \times {\omega _1}$
By rearranging the terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{4}{3}} \right)^2} \times {\omega _1}$
By squaring the terms, then
$\Rightarrow {\omega _2} = \dfrac{{16}}{9}{\omega _1}$
Hence, the option (B) is the correct answer.
Note: From the final answer, it shows that the angular velocity of the football before puncher is less than the angular velocity of the football after puncher. The angular velocity is increasing that the radius of the object is decreasing. If the radius increases the angular velocity decreases.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs